
AQUATIC MICROBIAL ECOLOGY
Aquat Microb Ecol

Vol. 46: 55–70, 2007 Published January 19

INTRODUCTION

Since planktonic algae are the main source of
autochthonous production of organic matter, associa-
tions between algae and bacteria are thought to be a
characteristic feature of the marine environment.
These associations may take the form of large-scale

correlations between abundance and activities of pri-
mary producers and bacteria (e.g. Gasol & Duarte
2000), or might take more specific forms, such as the
reported association between growing diatoms and
bacteria belonging to the Flavobacteria family of the
Bacteroidetes phylum (Pinhassi et al. 2004, Grossart et
al. 2005), or the Bacteroidetes, which have been asso-
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ABSTRACT: We characterised the spatial and temporal variation in the bacterioplankton assemblage
composition during bloom events of different Alexandrium species (Dinophyceae) in the littoral of the
NW Mediterranean Sea by means of catalysed reporter deposition fluorescence in situ hybridisation
with oligonucleotide probes (CARD-FISH). We studied several Alexandrium blooms through their
seasonal development (at La Fosca beach) or in their spatial variability (in Arenys Harbour and Olbia
Bay), and we complemented these observations by describing the composition of the bacterial assem-
blage associated with cultures of Alexandrium species isolated from the same sites. Our studies on
natural bacterioplankton assemblages identified the Bacteroidetes lineage and the Alphaproteobac-
teria as the dominating components during the studied blooms of Alexandrium. Alphaproteobacteria
dominated in the La Fosca and Olbia blooms, while bacteria belonging to the Bacteroidetes were
abundant in the development phase of the La Fosca beach bloom and in the winter Arenys bloom.
Gammaproteobacteria contributed in low proportions without significant changes through the differ-
ent bloom phases at La Fosca beach and in Olbia Bay, but were more abundant in Arenys Harbour.
While the absolute bacterial abundances in the spatial study of Olbia Bay covaried with the Alexan-
drium densities, there were no spatial changes in the bacterioplankton assemblage composition.
Alteromonas-like organisms were never an important fraction of the assemblage, but Roseobacter
dominated Alphaproteobacteria in Arenys Harbour. Furthermore, the bacterioplankton assemblages
associated with Alexandrium spp. cultures were very different from the natural bacterial assem-
blages during blooms of the same species. We conclude that the presence of a given harmful algal
bloom species during a bloom will not always necessarily be accompanied by the same bacterial
assemblage structure, and studies done with dinoflagellate cultures may only reflect the bacteria
capable of growing under laboratory conditions, with little resemblance to what occurs under natural
conditions.
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ciated with phytoplankton in some field studies
(DeLong et al. 1993, González & Moran 1997) and
mesocosm experiments (Riemann et al. 2000). These
associations may be considered as a form of symbiosis
or as a form of specific parasitism (Cole 1982).

Driven by the economic and sanitary impacts of
harmful algal blooms (HABs), a large research effort is
currently underway to understand the ecology of the al-
gal species involved (Granéli & Turner 2006), as well as
the effect of the blooming species on other components
of the planktonic food web. Of the many factors said to
play a role in HAB dynamics, the interactions between
algae and bacteria are increasingly being cited
(Kodama et al. 2006). In particular, the presence of spe-
cific bacteria has been proposed as an important modu-
lator of the processes of algal bloom initiation, mainte-
nance and decline (Doucette 1995, Adachi et al. 1999,
Doucette et al. 1999), but also as a potential modulator
of the bloom toxicogenesis (e.g. Gallacher et al. 1997).

If particular bacteria are responsible for certain
bloom characteristics, then one might expect to consis-
tently find similar assemblages of bacteria associated
with blooming dinoflagellates. Indeed, bacteria from 2
main groups, Alpha- and Gammaproteobacteria, are
commonly described as associated with dinoflagellate
cultures (Table 1 and references therein) or with nat-
ural populations of blooming dinoflagellates (Table 1
and references therein). The literature presents differ-
ent views about the type of specificity of the association
between bacteria and HABs. For example, while some
authors have identified the Bacteroidetes as associated
with Alexandrium dinoflagellates (Biegala et al. 2002),
other studies have convincingly shown that the
Roseobacter subgroup of Alphaproteobacteria and the
Alteromonas subgroup of Gammaproteobacteria are al-
most always associated with blooming Alexandrium
(Brinkmeyer et al. 2000, Sala et al. 2005). Field studies
relating HABs and the composition of the associated
bacteria have focused primarily on successional
changes and the possible inhibition or stimulation of
blooms by the bacteria (Buck & Pierce 1989, Romalde et
al. 1990, Fukami et al. 1991, Onji et al. 1995, Ishida et al.
1997) or their implication in the production and bio-
transformation of paralytic shellfish toxins (PSTs) (Tobe
et al. 2001). This seems to support the underlying idea
that there are specific associations between the HAB
species and their bacterial assemblages (e.g. Jasti et al.
2005). In any case, the in situ impact of these associa-
tions is not clear (Mayali & Azam 2004), and relatively
little is known about how components of natural bac-
terial assemblages interact with the HAB population.

A clear prediction concerning the composition of the
bacterial assemblage accompanying HAB development
is not yet possible, in part because most studies describ-
ing bacterial assemblage composition in natural dino-

flagellate blooms or in cultures of blooming dinoflagel-
lates have relied upon the plate isolation of bacteria
(references in Table 1) or upon techniques based on
PCR amplification of bacterial rDNA (e.g. Sala et al.
2005). It is well known that the first methodology does
not necessarily represent the in situ composition of the
bacterial assemblage (e.g. Suzuki et al. 1997), and the
techniques based on PCR amplification may suffer from
poorly constrained biases (Wintzingerode et al. 1997,
Castle & Kirchman 2004). Methods based on the detec-
tion of bacterial 16S rRNA genes with oligonucleotide
probes represent a useful tool to gain insight into the
composition of bacterioplankton assemblages (Glöck-
ner et al. 1999); these methods are independent of PCR
biases. This approach has allowed the detection of
highly specific bacterial assemblages on lake snow
(Schweitzer et al. 2001) and riverine aggregates (Böck-
elmann et al. 2000), has been used to study the speci-
ficity of associations in some HABs (Doucette et al.
1998), and has also been proven useful for the identifi-
cation, localisation and quantification of intracellular
and associated bacteria in dinoflagellate cultures (Bie-
gala et al. 2002). For our purpose of determining the
composition of the bacterial assemblage accompanying
the HAB species, a quantitative, cell-based detection
method such as fluorescent in situ hybridisation (FISH)
seemed most appropriate.

Several recurrent noxious blooms of the genus
Alexandrium (A. taylori, A. minutum and A. catenella)
provided the opportunity to follow bacterial changes
over a wide range of dinoflagellate cell abundances
(from 103 to 106 cells l–1) and different bloom phases (de-
velopment, maintenance and decline phase), including
non-bloom periods. To test the hypothesis that a given
dinoflagellate species would have a constant perma-
nently associated bacterial assemblage, the CARD-FISH
(catalyzed reporter deposition fluorescence in situ hy-
bridisation; Pernthaler et al. 2002) protocol was used to
assess the variation in abundance and composition of the
dominant groups of bacterioplankton. We focused on de-
scribing the seasonal, spatial and specific variability in
bacterial assemblage composition in terms of percent
contribution by the major groups, but we also used cul-
tures of the dinoflagellates that we had studied in situ,
and an external non-bloom station, to frame our results
and to better understand the meaning of the described
variability. The specific questions pursued were as fol-
lows: (1) What is the composition found in bacterioplank-
ton assemblages during HAB events? (2) Are the bacte-
rial associations specific during blooms of the same
dinoflagellate species? (3) Is bacterioplankton assem-
blage composition affected by high biomass blooms? (4)
Are the in situ bacterial associations similar to those of
the accompanying bacterial communities during clonal
culture growth of the dinoflagellate species?
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Table 1 (continued overleaf). Associations between dinoflagellates and bacteria reported in the literature. Dominant bacterial
lineages: those qualitatively dominating the samples (according to authors listed). Bacteroidetes often previously reported as
Cytophaga/Flavobacteria/Bacteroidetes; Alteromonas, Pseudoalteromonas, Vibrio, Moraxella and Pseudomonads are Gamma-
proteobacteria; Roseobacter, Ruegeria and Rhodobacter are Alphaproteobacteria. MPN: most probable number; FISH: fluores-
cence in situ hybridisation with oligonucleotide probes; DGGE: denaturing gradient gel electrophoresis; TSA: tyramide signal
amplification; CARD: catalysed reporter deposition; T-RFLP: terminal restriction fragment length polymorphism; TaqMan 

qPCR: quantitative PCR with the TaqMan assay

Dinoflagellate Dominant bacterial lineages Technique Source
(Site/Samples)

Alexandrium affine Alphaproteobacteria FISH Groben et al. (2000)
(Cultures) (Stappia/Moraxella)

Roseobacter, Alteromonas Plate isolation and FISH Gallacher et al. (1997),
Brinkmeyer et al. (2000)

Roseobacter,  Alteromonas Plate Isolation Gallacher et al. (1997)
Roseobacter Plate isolation, DGGE, Hold et al. (2001b)

TRFLP, clone libraries
A. catenella Cytophaga, Plate isolation Amaro et al. (2005)
(Cultures) Pseudoalteromonas, Ruegeria

Pseudomonas, Moraxella FISH Babinchak et al. (1998)
Gammaproteobacteria > Plate isolation Córdova et al. (2002)
Bacteroidetes*
Roseobacter, Plate isolation Vásquez et al. (2001)
Alphaproteobacteria and
Gammaproteobacteria

A. catenella Roseobacter > Bacteroidetes DGGE Sala et al. (2005)
(NW Mediterranean
harboursa and Cultures)

A. fundyense Alpha- and FISH Babinchak et al. (1998)
(Cultures) Gammaproteobacteria

Bacteroidetes TSA-FISH Biegala et al. (2002)
Roseobacter > Bacteroidetes > DGGE Jasti et al. (2005)
Alteromonadaceae

A. fundyense Bacteroidetes DGGE Ferrier et al. (2002)
(Bay of Fundy) Plate isolation

Alteromonas DGGE Ferrier et al. (2002)
Plate isolation

A. minutum (including Pseudomonas FISH Babinchak et al. (1998)
when reported as Roseobacter, Alteromonas Plate isolation, FISH Brinkmeyer et al. (2000)

A. lusitanicum) Pseudomonas stutzeri Plate isolation Franca et al. (1995)
(Cultures) Roseobacter and Alteromonas Plate isolation Gallacher et al. (1997)

Alpha- and Plate isolation, DGGE, Hold et al. (2001a)
Gammaproteobacteria TRFLP

Clone libraries
Pseudomonas Plate isolation Franca et al. (1996)
Gamma- and Plate isolation Lu et al. (2000)
Alphaproteobacteria
(intracellular) and Gamma-,
Alphaproteobacteria
Bacteriodetes (extracellular)

A. minutum Roseobacter > Bacteroidetes DGGE Sala et al. (2005)
(NW Mediterranean
harboursa and Cultures)

Alexandrium spp. Roseobacter,  Alteromonas FISH (several Tobe et al. (2001)
(Orkney Islands) Alteromonas and

Roseobacter probes)

Alexandrium spp. Non- Alphaproteobacteria FISH Babinchak et al. (1998)
Toxic and Toxic and Gammaproteobacteria
(Cultures)

A. tamarense Pseudomonas FISH Babinchak et al. (1998)
(Cultures) Bacteroidetes, Alteromonas TSA-FISH Biegala et al. (2002)

Roseobacter, Alteromonas Plate isolation Brinkmeyer et al. (2000)
FISH
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Table 1 (continued)

Dinoflagellate Dominant bacterial lineages Technique Source
(Site/Samples)

Alteromonas Plate isolation Doucette & Trick (1995)
Roseobacter and Alteromonas Plate isolation Gallacher et al. (1997)
Alphaproteobacteria
and Gammaproteobacteria Plate isolation, DGGE, Hold et al. (2001a)

TRFLP
Clone libraries

Roseobacter > Bacteroidetes > DGGE Jasti et al. (2005)
Alteromonadaceae
Moraxella Plate isolation Kodama et al. (1990)
Gammaproteobacteria Plate isolation Kopp et al. (1997)

Dot-blot hybridization
with probes

Alphaproteobacteria Plate isolation Groben et al. (2000)
(Stappia/Moraxella)

A. tamarense Alteromonas and Vibrio MPN bioassay for Adachi et al. (2001)
(Hiroshima Bay, Japan) inhibitory bacteria

Roseobacter, Rhodobacter Plate isolation Adachi et al. (2003)
and Pseudomonads

A. tamarense Roseobacter, Bacteroidetes DGGE Wichels et al. (2004)
(Orkney Islands and Alteromonadaceae Plate isolation
and Firth of Forth)

Gambierdiscus toxicus Alteromonas sp. Plate isolation Sakami et al. (1999)
(Cultures)

Gammaproteobacteria > Plate isolation Tosteson et al. (1989)
Bacteroidetes > Actinobacteria

Gymnodinium catenatum Pseudomonas Plate isolation Franca et al. (1996)
(Cultures) Alphaproteobacteria Plate isolation Green et al. (2004)

(Rhodobacteraceae) and
Gammaproteobacteria
(Alteromonadaceae)

Gymnodinium catenatum Vibrio, Pseudomonas, Plate isolation Romalde et al. (1990)
(Rías in Galicia) Moraxella and other

Gammaproteobacteria
Gyrodinium instriatum Bacteroidetes (intracellular) FISH Alverca et al. (2002)
(Cultures) and Gammaproteobacteria

(extracellular)
Karenia brevis (= Gammaproteobacteria Plate isolation Buck & Pierce (1989)
Ptychodiscus brevis)
(Blooms in Florida
Gulf coast)

K. mikimotoi Gammaproteobacteria Plate isolation Ishida et al. (1997)
(=Gymnodinium mikimotoi) Moraxella, vibrio Plate isolation Onji et al. (1995)
(Cultures)

Lingulodinium polyedrum Bacteroidetes DGGE Fandino et al. (2001)
(Scripps Pier) Bacteroidetes TaqMan qPCR Fandino et al. (2005)

Ostreopsis lenticularis Gammaproteobacteria > Plate isolation Tosteson et al. (1989)
(Cultures) Bacteroidetes >Actinobacteria

Pfisteria sp. (Cultures) Alphaproteobacteria Plate isolation Alavi et al. (2001)
(Rugiera algicola) Clon libraries

Prorocentrum lima Roseobacter Plate isolation Lafay et al. (1995),
(Cultures) Prokic et al. (1998)

Prorocentrum minimum Roseobacter > Bacteroidetes > DGGE Jasti et al. (2005)
(Cultures) Alteromonadaceae

Scrippsiella sp. Roseobacter > Bacteroidetes > DGGE Jasti et al. (2005)
(Cultures) Alteromonadaceae

Scrippsiella trochoidea Bacteroidetes Plate Isolation, DGGE, Hold et al. (2001b)
(Cultures) TRFLP

Clone libraries
aIncluding the Arenys harbour
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MATERIALS AND METHODS

Surface samples were regularly collected during the
development of 3 different dinoflagellate blooms in
coastal waters of the NW Mediterranean (Fig. 1). The
blooms were dominated by the target species Alexan-
drium taylori Balech (at La Fosca beach) and A. minu-
tum Halim (Arenys Harbour) along the Catalan coast
(NE Spain), and several Alexandrium species, mainly
A. catenella (Whedon et Kofoid) Balech, A. tamarense
(Lebour) Balech and A. minutum in Olbia Bay (NE Sar-
dinia) in the Tyrrhenian Sea (Italy). All these sites are
confined areas where dinoflagellate blooms regularly
occur, developing at a very wide range of density and
biomass values. These results were compared with
those from a site not affected by Alexandrium blooms:
the Microbial Observatory of Blanes Bay (MOBB), also
on the NW Mediterranean Catalan coast, but in an
open bay (Vaqué et al. 1997, Duarte et al. 1999,
Alonso-Sáez et al. 2007).

Seasonal sampling was performed
at La Fosca beach, located on the
Costa Brava (NW Mediterranean Sea,
41° 51’ N, 3° 8’ E; Fig. 1A). This is a
semi-enclosed bay (525 × 300 m) that
opens towards the SE. Detailed in-
formation on Alexandrium taylori
blooms at this location has been previ-
ously published (Garcés et al. 1998,
1999, 2002, 2005). Spatial studies were
carried out in Arenys Harbour and Ol-
bia Bay (Fig. 1B,C). Arenys Harbour
is located on the NE Spanish coast
(NW Mediterranean Sea, 41° 34’ N,
2° 33’ E). Depth ranges from 1 to 2.5 m
at the dockside to maxima of 5 to 6 m in
the central area and at the harbour
entrance. The harbour is characterised
by strong variations in salinity related
to the inflow of terrestrial freshwater.
Detailed information on A. minutum
blooms at this location has been previ-
ously published (Vila et al. 2001, 2005).
The Olbia Bay (40° 55’ N, 9° 30’ E) is
located in the inner part of the Gulf of
Olbia. It is a typical estuary with long
water renewal time and significant
freshwater inflow from 2 municipal
sewers and the Padrongianus River.
The Olbia Bay hosts one of the most im-
portant commercial ports (with urban,
tourism and industrial activities), and is
the largest shellfish farming (mussels
and clams) area of Sardinia. The bay
has an area of 6.5 km2, is about 7 km

long and between 1 and 3 km wide, it has a mean depth
of about 5 m and a maximum depth of about 10 m,
along the central channel. Detailed information on
blooms at this location has been previously published
(Sannio et al. 1997, Lugliè et al. 2003a,b, 2005).

Field sampling. Between June and September 2003
surface sampling from the shore of La Fosca beach
(maximum depth, 1 m; Fig. 1) was conducted once a
week. Spatial variation of the bacterioplankton assem-
blage in Arenys Harbour was intensively monitored
during the 2002 bloom. Samples were collected at dif-
ferent locations (6 stations) across the harbour, during
the maintenance phase of the dinoflagellate bloom
(18 February 2002), just after the maximum cell con-
centration was reached (see Vila et al. 2005 for details).

In Olbia Bay, spatial variation of the bacterioplank-
ton assemblage was monitored on 11 May 2003, just
after a PST-positive period (>800 µg kg–1 saxitoxin)
that was associated with the presence of Alexandrium.
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Fig. 1. (A) Geographic location of the stations in the western Mediterranean: La
Fosca beach, Arenys Harbour and Blanes Bay (Catalonia, Spain), and Olbia Bay
(Sardinia, Italy). Fixed stations were sampled at La Fosca beach (from the shore)
and at the Microbial Observatory of Blanes Bay (MOBB). Stations sampled in

(B) Olbia Bay and (C) Arenys de Mar Harbour are shown
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Surface samples were collected from 7 stations across
the bay, during the end phase of the toxic event. Sam-
ples were collected in 5 l bottles and immediately
transported to the laboratory for appropriate fixation
procedures within 1 h. In the case of Arenys, the sam-
ples were fixed in situ. In the case of La Fosca and
Arenys, subsamples (50 ml) for nutrient measurements
were frozen upon arrival in the laboratory and concen-
trations of nitrate, nitrite, ammonia, phosphate and
silicate were determined with an autoanalyser follow-
ing Grasshoff et al. (1983). Olbia samples for nutrients
were frozen and then analysed according to Strickland
& Parsons (1972).

Subsamples (60 ml) for the quantification of total
chlorophyll a (chl a) were filtered onto 25 mm Whatman
GF/F glass fibre filters. Filters were extracted in 8 ml of
90% acetone, and concentrations of chl a were mea-
sured with a Turner Designs fluorometer following
Yentsch & Menzel (1963). At the Olbia stations, chl a was
estimated in situ using a calibrated multiparametric
probe (Idromar). The same instrument was used to
record temperature and salinity values (data not shown).

Duplicate subsamples (60 ml) for measurements of
DOC (dissolved organic carbon) in the La Fosca sam-
ples were filtered through precombusted glass fibre
filters (25 mm Whatman GF/F). Filtrates were collected
in precombusted glass ampoules, acidified and stored
at 4°C until analysed in a Shimadzu 5000 ASI TOC
instrument following Sugimura & Suzuki (1998).

Phytoplankton identification and quantification. The
phytoplankton samples (150 ml) were preserved with
Lugol iodine solution, except those from Olbia (500 ml),
which were fixed with 4% neutralised formaldehyde.
The general procedure for identifying and quantifying
phytoplankton cells from La Fosca and Arenys Harbour
involved sedimentation (24 h) of a subsample in a 50 ml
settling chamber and subsequent counting of cells in an
appropriate area (Throndsen 1995) using a Leica-Leitz
DM-IL inverted microscope. Olbia phytoplankton den-
sities were enumerated allowing the original 500 ml
samples to settle for 3 d, removing the upper 450 ml,
collecting the residual 50 ml, of which 10 ml was al-
lowed to settle for 8 h. Cells were counted in the entire
chamber using a Zeiss Axiovert 100 inverted micro-
scope. Fixed specimens of Alexandrium species were
stained with Calcofluor White M2R (Fritz & Triemer
1985) and examined in an epifluorescence microscope
under ultraviolet excitation (Axioplan, filter set Zeiss
487902, 1000× magnification). Tabular formula and
morphological features of the thecal plates were stud-
ied following the criteria of Balech (1995).

Algal cultures and associated bacterioplankton.
Clonal strains of Alexandrium taylori (CSIC-AV8 iso-
lated from La Fosca beach in 1998, EMBL Accession
No. AJ251654), A. minutum (CSIC-1 isolated from

Arenys Harbour in 1995, EMBL Accession No.
AJ312945) and A. catenella (CSIC-4 isolated from
Barcelona Harbour in 1998, EMBL Accession No.
AJ298900) were used to study the associated bacterial
assemblages. Cultures were established from vegeta-
tive cells in f/2 media (Guillard 1975) and maintained
at 20°C in a 12 h light: 12 h dark photocycle. Illumina-
tion was provided at a photon irradiance of 100 µmol
m–2 s–1. Samples (60 ml) of culture in different growth
phases (exponential, maintenance) and a 1 yr-old cul-
ture (for A. taylori only) were fixed in Lugol’s iodine for
phytoplankton counts and processed for bacterial
analyses.

Bacterial analyses. To study the associated bacterial
assemblage, 10 to 50 ml was filtered onto 0.2 µm pore
size Nuclepore filters (25 mm diameter) with a
gentle vacuum of 150 mbar at room temperature. Bac-
teria were fixed by addition of 1% formaldehyde–
phosphate-buffered saline (PBS) (at pH 7.2). Cellulose
nitrate support filters were employed to favour ho-
mogeneous distribution of cells. The fixative was
eliminated 30 min later, and filters were rinsed with
2 ml PBS and Milli-Q water. The samples were sub-
sequently stored at –80°C until further processing
(within a few months). Total numbers of bacteria were
determined by epifluorescence microscopy of 4’-
6’-diamidino-2-phelylindole (DAPI)-stained samples.
DAPI-stainable and probe-specific bacteria were
counted in a minimum of 10 randomly selected view
fields, at 1000× magnification, until 300 to 500 cells
were counted. In these samples the coefficient of vari-
ation of the DAPI counts was 16% (mean). The compo-
sition of the bacterial assemblage was determined by
in situ hybridisation with horse-radish peroxidase
(HRP)-labelled probes (Pernthaler et al. 2002) listed
in Table 2. Filters were dipped in low-gelling-point
agarose (0.1% [w/v]), dried upside down at 37°C and
subsequently dehydrated in 96% (v/v) analytical
grade ethanol. For cell wall permeabilisation, filters
were incubated in a lysozyme solution (10 mg ml–1,
0.05 M EDTA, 0.1 M Tris-HCl; Fluka) at 37°C for
60 min, followed by a digestion by achromopeptidase
(60 U ml–1) for 30 min. The achromopeptidase incuba-
tions were performed at 37°C in a buffer containing
0.01 M NaCl and 0.01 M Tris-HCl (pH 8). The filters
were washed with Milli-Q water, dehydrated with
96% ethanol, dried at room temperature and sub-
sequently stored on Petri dishes at –20°C until further
processing. Filters were cut in sections for hybri-
disation with oligonucleotide probes. A volume of 3 µl
of the HRP probe working solution (50 ng µl–1) was
added to 900 µl hybridisation buffer (0.9 M NaCl,
20 mM Tris-HCl, 10% dextran sulphate [w/v], 0.02%
sodium dodecyl sulphate [SDS] and 1% blocking
reagent) containing 45% formamide (v/v) for the
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ALF968 probe, 20% formamide for the NON338 probe
and 55% formamide for the other probes. Probe
GAM42a was used with a BETA42a competitor
oligonucleotide (Manz et al. 1992). Hybridisation of fil-
ter sections was performed at 35°C for 2 h. Thereafter,
the sections were transferred to 50 ml of pre-warmed
washing buffer (5 mM EDTA [pH 8], 20 mM Tris-HCl
[pH 7.6], 0.01% [w/v] SDS) containing 16 mM NaCl for
ALF968, 135 mM for NON338 and 3 mM for the other
probes employed. Washing was performed for 5 min at
37°C. Sections were then placed in PBS solution at
room temperature for 15 min. After removal of excess
buffer, the filter sections were immediately transferred
to 1.5 ml reaction vials containing 1 ml amplification
buffer (1× PBS [pH 7.6], 10% [w/v] dextran sulphate,
2 M NaCl, 0.1% [w/v] blocking reagent and 0.0015%
H2O2 in PBS) and 4 µl of tyramide-Alexa488 (1 mg
ml–1) and incubated in the dark at 46°C (15 min). The
H2O2 solution was freshly prepared before being
employed. P-iodophenylboronic acid (20 mg mg–1 tyra-
mide) was added to the tyramide-Alexa488 probe to
enhance the CARD-FISH signal. After amplification,
filters were washed in PBS (room temperature,
15 min), Milli-Q water and 96% ethanol, and subse-
quently air dried. Finally, filter sections were mounted
in a mixture that contained 4 parts Citifluor (Citifluor)
and 1 part Vecta Shield (Vector Laboratories) contain-
ing DAPI (final concentration: 1 µg ml–1). The
hybridised samples were visualised with a Nikon epi-
fluorescence microscope equipped with a 100 W Hg
lamp and the appropriate filter sets for DAPI and
Alexa488; >300 to 500 DAPI-stained cells were
counted per sample.

Statistical analyses. To identify potentially important
variables controlling the temporal and spatial dynam-
ics of phytoplankton and bacterial abundance, a corre-
lation analysis was performed with the STATISTICA
(StatSoft) software package. Biological data employed
were log-transformed prior to analysis to fit a log-
normal distribution, and the probabilities reported are
Bonferroni corrected.

RESULTS

Temporal variation: the Alexandrium taylori bloom
at La Fosca beach

During the 4 mo of sampling (June to September),
Alexandrium taylori densities increased from 104 to
106 cells l–1 during the development phase from June
to July. The maintenance phase occurred in July. The
decline phase of the bloom was marked by a sharp
decrease in cell numbers detected during August
(Fig. 2A). Concentrations of chl a varied between 0.5
and 41 µg l–1 during the bloom (Fig. 2B), with a chl a
maximum that coincided with maximum DOC concen-
trations (Fig. 2C). High values of DOC (>200 µM) were
also measured during the decline phase of the bloom.
Dissolved inorganic nitrogen (DIN) ranged between
0.5 and 3 µM N during the bloom (Fig. 2C) and P-PO4

between 0.1 and 4.6 µM (details not shown).
Unfortunately, the bacterioplankton samples for July

were lost, and the remaining samples for analyses of
the bacterioplankton assemblage covered 2 of the
bloom phases (development and decline), as well as a
non-bloom situation (Fig. 2). Detection of bacteria by
Probe EUB338 ranged from 70 to 90% of the total
DAPI-stainable cells present. Bacteria scoring positive
with the negative control probe were <1% of the DAPI
count. The bacterial assemblage changed during the
different bloom stages. Bacteroidetes and Alphapro-
teobacteria dominated in the early stage of the devel-
opment phase, with maximum densities of 106 cells
ml–1, and showed a decreasing tendency during the
following weeks (down to 105 cells ml–1; Fig. 2A). The 2
groups were dominant again in the decline phase.
Alphaproteobacteria always remained >105 cells ml–1,
and the Bacteroidetes showed a decline from 105 to
104 cells ml–1. Gammaproteobacteria densities were
always lower than those of the Bacteroidetes and
Alphaproteobacteria; they ranged from a maximum of
105 cells ml–1 at the beginning of the development
phase to a minimum of 8 × 103 cells ml–1 in the non-
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Probe Target group Sequence (5’—3’) Source

EUB338 Bacteria GCT GCC TCC CGT AGG AGT Amann et al. (1990)
EUB338 II Bacteria GCA GCC ACC CGT AGG TGT Daims et al. (1999)
EUB338 III Bacteria GCT GCC ACC CGT AGG TGT Daims et al. (1999)
NON338 Negative control ACT CCT ACG GGA GGC AGC Manz et al. (1992)
ALFA968 Alpha subclass of Proteobacteria GGT AAG GTT CTG CGC GTT Glöckner et al. (1999)
BET42a Beta subclass of Proteobacteria GCC TTC CCA CTT CGT TT Manz et al. (1992)
GAM42a Gamma subclass of Proteobacteria GCC TTC CCA CAT CGT TT Manz et al. (1992)
CF319a Bacteroidetes TGG TCC GTG TCT CAG TAC Manz et al. (1996)
ROS538 Roseobacter clade of Alphaproteobacteria CAA CGC TAA CCC CCT CC Eilers et al. (2001)
ALT 1413 Alteromonas clade of Gammaproteobacteria TTT GCA TCC CAC TCC CAT Eilers et al. (2000)

Table 2. Sequences, target groups, and origin of the probes used in this study
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bloom period, and showed a trend similar to that of the
other bacterial groups.

Within the Alphaproteobacteria, members of the
Roseobacter group showed a temporal trend similar to
that of the general group, with maximum cell densities

of 4 × 104 cells ml–1, declining down to
9 × 103 cells ml–1 in the non-bloom
period. Within the Gammaproteobacte-
ria, the Alteromonas cells (i.e. cells
scoring positive with Probe ALT1413)
were not very abundant during any
period, reaching maximum cell densi-
ties of 1 × 104 cells ml–1 during the
decline phase.

Bacteroidetes together with the Al-
phaproteobacteria always amounted to
>50% of DAPI counts (Fig. 3A). The 2
groups showed inverse trends: Al-
phaproteobacteria percent contribution
increased from 31% of the total DAPI-
stainable cells in the developing phase
to 36% in the decline phase and to 40%
in the non-bloom period, whereas the
Bacteroidetes varied, respectively,
from 34 to 20 and to 13%. Gammapro-
teobacteria never contributed >8% of
the bacterioplankton assemblage and
decreased in the non-bloom period
(4%). The unidentified fraction of the
cells (not accounted for by the 3 probes)
was largest (44% of the total DAPI-
stainable cells) during the non-bloom
period. Roseobacter were 19% of the
Alphaproteobacteria group during the
development phase, 24% during the
decline phase and ≤8% during the
non-bloom period (Fig. 3B). Altero-
monas bacteria were, on average, 1%
of the Gammaproteobacteria during
both the development phase and the
non-bloom period, whereas they
reached up to 16% during the decline
phase (details not shown).

Spatial variation: the Alexandrium
minutum bloom in Arenys Harbour

High abundances of Alexandrium
minutum (from 4 × 105 to 1 × 107 cells
l–1) were found in the entire harbour,
with maximum values at Stn 1 (Fig. 4).
The values decreased towards the har-
bour entrance. Distribution patterns of
chl a concurred with those of A. minu-

tum cell abundance, with values varying between 1.9
and 6 µg chl a l–1. Average concentrations of phosphate
(P-PO4) and ammonia (N-NH3) were 0.40 and 0.62 µM,
respectively. N-NO3 concentrations were <2 µM (de-
tails not shown).
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Fig. 2. (A) Temporal fluctuations of Alexandrium taylori cell density (cells l–1) in
La Fosca beach surface waters in 2003 and co-occurring bacterioplankton
groups: Alphaproteobacteria (Probe ALF968), Bacteroidetes (Probe CF319a)
and Gammaproteobacteria (Probe GAM42a) enumerated by CARD-FISH. (B)
Chlorophyll a concentration (µg l–1) and co-occurring abundances of Roseobac-
ter (Probe ROS538) and Alteromonas (Probe ALT1413). (C) Dissolved organic
carbon (DOC) and dissolved inorganic nitrogen (DIN) during the study period
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We found similar detectability of bacteria with Probe
EUB338 (81 to 91% of the total DAPI-stainable cells)
and low proportions of negative control probe positive
cells as in the previous area. High densities of bacteri-
oplankton were detected for the Bacteroidetes
(>105 cells ml–1 at each station; Fig. 4A). Maxima of the
3 main groups were similar and were observed at Stn 4
(3.3 × 105 cells ml–1 for Alphaproteobacteria, 4 ×
105 cells ml–1 for Bacteroidetes and 3.7 × 105 cells ml–1

for Gammaproteobacteria).
The maximum densities of Roseobacter detected in

Arenys Harbour (2.5 × 105 cells ml–1) were similar to
those observed in Olbia Bay (2.2 × 105 cells ml–1; Fig. 5B)
and exceeded the values measured at La Fosca beach,

where the maximum was observed at
the beginning of the development
phase (4 × 104 cells ml–1; Fig. 2B).

The bacterioplankton assemblage
in Arenys Harbour appeared quite
constant, showing only a relatively
lower presence of Alphaproteo-
bacteria at the harbour entrance
(Fig. 3A). Correspondingly, the per-
cent contribution of Gammaproteo-
bacteria increased (from 25% of the
total DAPI-stainable cells in the inner
part to 30% at the outer station). Ro-
seobacter was the main group within
the Alphaproteobacteria (from 84 to
100% of the Alphaproteobacteria
cells), in contrast to the other coastal
stations (Fig. 3B). Alteromonas never
contributed >16% of the Gamma-
proteobacteria, showing higher per-
cent contributions at Stns 4 and 5
(Fig. 4B).

Spatial variation: the Alexandrium
spp. bloom in Olbia Bay

This event was characterised by a
relatively sparse dinoflagellate bloom
(2 × 104 cells l–1). The maximum den-
sity of Alexandrium spp. was detected
in the inner area (4.4 × 103 cells l–1 at
Stn 1; Fig. 5A) and was 1 order of
magnitude lower than the values
achieved just a week before (22 × 103

cells l–1 at the same station, 3 May).
Moreover, the Alexandrium spp. den-
sities gradually decreased towards
the bay entrance. The bloom was
formed by 3 species: A. catenella, A.
minutum and A. tamarense. Together

they comprised up to 36% (at Stn 6) of the total dinofla-
gellate density (maximum of 17.4 × 103 cells l–1 at Stn
1). Distribution patterns of chl a (maximum of 25 µg chl
a l–1 at Stn 1) showed a drastic decrease towards the
bay entrance (0.12 µg l–1 at Stn 7). Concentrations of
phosphate (P-PO4) were not >0.04 µM (Stn 1) and
ammonia (N-NH4) ranged from 0.13 to 4.60 µM,
respectively, at Stns 4 and 1. The N-NO3 maximum
was 1.08 µM at Stn 1 (details not shown).

Detection of bacteria with Probe EUB338 was more
varied than at the other sites (63 to 90% of the total
DAPI-stainable cells). Maximum densities of Alpha-
proteobacteria in Olbia Bay were up to ca. 106 cells
ml–1 (Stn 2; Fig. 5A) and exceeded those observed in
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Fig. 3. (A) Percentage contribution to DAPI of Alphaproteobacteria (Probe
ALFA968), Bacteroidetes (Probe CF319a) and Gammaproteobacteria (Probe
GAM42a) detected by CARD-FISH in La Fosca beach surface waters in 2003 and,
for the spatial studies, in Arenys Harbour in 2002 and Olbia Bay in 2003. Uniden-
tified: cells not accounted for by the 3 probes. (B) Contribution of Roseobacter
(Probe ROS538) to total Alphaproteobacteria (Alpha). Bloom stages are indicated
in La Fosca sampling. Inner stations for Olbia Bay correspond to Stns 1 to 5, and
outer stations are Stns 6 and 7. Inner stations for Arenys Harbour correspond to
Stns 1 to 5, and the outer station is Stn 6. For comparison, percentages of the
groups in samples from the Microbial Observatory of Blanes Bay (MOBB) during

the different seasons of 2003 are plotted



Aquat Microb Ecol 46: 55–70, 2007

Arenys Harbour and at La Fosca beach. The Bac-
teroidetes were also abundant in Olbia Bay (maximum
of 6 × 105 cells ml–1 at Stn 2), whereas Gammapro-
teobacteria counts at this location were similar to those
in other sampled areas, with a maximum of 3 × 105 cells
ml–1 at Stn 2. The values were similar at all inner sta-
tions (Stns 1 to 5), but lower towards the outer sta-
tions (Stns 6 and 7). Bacterioplankton assemblages
appeared quite stable on a rather large spatial scale
(10 km), showing little change in percentage composi-
tion from the inner to the outer stations (Fig. 3A), in
spite of the large change in bacterial abundance. How-
ever, Roseobacter contributed from 14 (outer stations)
to 43% (inner stations) to the Alphaproteobacteria
group (Fig. 3B), whereas Alteromonas were <9% of
the Gammaproteobacteria group, being more impor-
tant in the inner part of the bay.

For comparison, we followed a 1 yr annual cycle at
the MOBB, a relatively open station not known to be
affected by dinoflagellate blooms. There, detection of
bacteria by Probe EUB338 ranged from 63 to 85% of
the total DAPI-stainable cells. The maximum contri-

bution of the 3 main groups of bacterioplankton dur-
ing summer (June, August and September) corre-
sponded to Alphaproteobacteria (38% of the total
DAPI-stainable cells), followed by Bacteroidetes
(12%). During winter (December, January and Feb-
ruary), Alphaproteobacteria contributed, on average,
20% of the total DAPI-stainable cells, followed by
the Bacteroidetes (14%). During spring, the percent
contribution of Alphaproteobacteria was higher (24%
of the total DAPI-stainable cells), while Bacteroidetes
(12%) remained roughly at the same level (Fig. 3A).
Roseobacter contributed from 3 to 30% to the Alpha-
proteobacteria from summer to winter, and Altero-
monas were from 0 to 50% of the Gammaproteo-
bacteria (data not shown). Bacterial assemblage
structure, in terms of contribution of the main groups
to total DAPI abundance in samples from this coastal
station (MOBB), was rather similar to that found
at La Fosca beach during non-bloom conditions
(Fig. 3A), but strongly differed from that attained in
the enclosed ecosystems of Arenys de Mar Harbour
and Olbia Bay.
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Bacteria growing in Alexandrium cultures

The bacterioplankton assemblages associated with
Alexandrium spp. cultures were very different from the
natural bacterial assemblages during blooms of the
same species (Fig. 6). In the case of A. taylori (a culture
isolated from La Fosca beach), the dominating bacte-
rioplankton group during the exponential phase of the
culture was Gammaproteobacteria, while this group
was less abundant during the maintenance phase
(Fig. 6). When the culture was 1 yr old, Gammapro-
teobacteria and Alphaproteobacteria co-dominated the
bacterioplankton assemblage (both representing 60%
of the total DAPI-stainable cells). Few Bacteroidetes
were detected during the exponential phase, whereas

during the maintenance phase they comprised 14% of
total abundance. Roseobacter comprised from 35 to
71% of the Alphaproteobacteria group. In the A. minu-
tum culture (isolated from Arenys Harbour), Alphapro-
teobacteria dominated the bacterioplankton assem-
blage (18% of the total DAPI-stainable cells), with very
little contribution from the other groups, although in
this culture a large percent of the EUB-positive bacteria
could not be identified with any of the probes used. In
contrast to the in situ samples, Roseobacter was not the
main group within the Alphaproteobacteria. In the A.
catenella culture, Gammaproteobacteria dominated
the bacterioplankton assemblage (24% of the total
DAPI-stainable cells). Similar percentages of Roseo-
bacter were found in the culture and in situ samples.

Alteromonas were not >2% of the
Gammaproteobacteria in all the
Alexandrium spp. cultures (details not
shown).

Correlation analysis

Chlorophyll a was significantly posi-
tively correlated with bacterial EUB-
positive bacteria cell concentration
(Table 3), as well as with Bacteroidetes.
Among the bacterioplankton groups,
Roseobacter was significantly corre-
lated to Alexandrium cell densities and
temperature. Neither total nitrogen nor
phosphorus concentrations were corre-
lated with any of the bacterioplankton
group abundance data.

DISCUSSION

Different coastal locations known to
be affected by HAB were sampled to
study the taxonomic composition of the
dinoflagellate communities and the
associated bacterioplankton assem-
blages during bloom and non-bloom
conditions. The results obtained were
used to discuss whether algal blooms
actually alter the composition of the
bacterioplankton community and to
what extent these alterations are asso-
ciated with the bloom-dominating algal
species. Dinoflagellate cultures were
also examined to evaluate whether the
observed in situ associations also ap-
plied to clonal isolates of the bloom-
dominating algal species. We provide
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quantitative data on the abundance of the main marine
bacterioplankton groups (Alphaproteobacteria, Bac-
teroidetes and Gammaproteobacteria) and additional
information on some specific subgroups (Roseobacter
and Alteromonas). These were selected on the basis of
previously published information that suggested that
these groups tended to be encountered in association
with growing dinoflagellates (Table 1).

We have found no evident specificity of association
between the bacterioplankton assemblage and the
dinoflagellates. Alphaproteobacteria was the most
abundant group in the Olbia study, with Bacteroidetes
being the second. Bacteroidetes were abundant in the
development phase of the La Fosca beach bloom, but
decreased during the decline phase, when Alphapro-
teobacteria became the most important group.
Gammaproteobacteria contributed in low proportions
without significant changes throughout the different
bloom phases and localities. Alteromonas-like organ-
isms (Probe ALT1413) were never an important frac-
tion of the assemblage, while Roseobacter were the
main specific group within the Alphaproteobacteria in
the A. minutum bloom (Arenys Harbour). This latter
case will be discussed below, since the bacterial
assemblage structure could represent a characteristic
situation of a dense dinoflagellate bloom.

The lack of specificity in our study (e.g. in the cases
of Alexandrium minutum and A. catenella) seems con-
tradictory to some previous work. This could be due to
the methodologies used or due to the differences
between studies done on dinoflagellate cultures and
those done on in situ communities. The studies pub-
lished to date are dominated by the use of plate isola-
tion and, in a few cases, PCR-based fingerprinting
techniques, such as denaturing gradient gel elec-

trophoresis (DGGE) or terminal restriction fragment
length polymorphism (T-RFLP). Furthermore, most
studies have described the bacterial assemblages asso-
ciated with dinoflagellate cultures and extrapolated
from them. Our approach was to use PCR-independent
CARD-FISH to analyze the group-level diversity of the
bacterial assemblages. The comparison between bac-
terial assemblage structure assessed by a PCR tech-
nique, i.e. DGGE, and FISH is not straightforward.
DGGE and T-RFLP are fingerprinting techniques with
a higher resolution in the description of the assem-
blage structure, but that might be subject to biases
introduced by DNA extraction and the polymerase
chain reaction, such as chimera and heteroduplex for-
mation, template annealing and preferential amplifica-
tion of some DNA templates (Wintzingerode et al.
1997). These biases can lead to uncertainties in the
quantitative interpretation of the results. The FISH
technique has a lower resolution level, since the num-
ber of probes used for each sample is limited and one
can often miss the diversity within each broad phylo-
genetic group. Counting under the microscope also
makes it a time-consuming technique, and, thus, the
number of samples that can be handled is usually
lower. Furthermore, the method itself can be subject to
technical problems, such as non-specific binding of the
probes (Pernthaler et al. 2002) or lack of coverage of
some of the probes (e.g. Manz et al. 1996).

The generalisation that only a few groups dominate
the bacterioplankton assemblages during HAB events
(Table 1) also suffers from a large proportion of the
available literature pertaining to dinoflagellate cul-
tures; natural blooms have only seldom been studied
with PCR and culture-independent techniques (e.g.
Tobe et al. 2001). Studies in unialgal cultures growing
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Log chl a PO4 DlN Log Alex Log Dinos Log DAPI Log EUB Log Roseo Log α Log Bac Log γ Log Alt

Log chl a 1
PO4 0.590 1
DlN –0.296 0.024 1
Log Alex 0.235 0.488 0.127 1
Log Dinos 0.268 0.585 0.303 0.904** 1
Log DAPI 0.590 –0.132 –0.495 –0.072 –0.213 1
Log EUB 0.733* 0.091 –0.303 0.353 0.265 0.801** 1
Log Roseo 0.559 0.287 0.028 0.743** 0.702* 0.352 0.731* 1
Log α 0.383 0.005 –0.555 –0.320 –0.385 0.853** 0.531 0.075 1
Log Bac 0.657* 0.144 –0.085 0.451 0.310 0.666** 0.865 0.795** 0.379 1
Log γ 0.600 0.254 –0.131 0.547 0.453 0.635** 0.886** 0.853** 0.307 0.881** 1
Log Alt –0.550 –0.515 0.019 –0.087 –0.093 0.733 0.546 0.525 0.749 0.767 0.663 1

Table 3. Pearson correlation coefficients between chlorophyll a concentration (chl a, µg l–1), PO4 and dissolved inorganic nitrogen
concentration (DIN, µM), Alexandrium sp. densities (Alex, cells l–1), dinoflagellate total cell densities (Dinos, cells l–1), bacterial DAPI
counts (DAPI, cells ml–1), EUB cell concentrations (EUB, cells ml–1), Roseobacter cell concentrations (Roseo, cells ml–1), Alphaproteo-
bacteria cell concentrations (α, cells ml–1), Bacteroidetes cell concentrations (Bac, cells ml–1), Gammaproteobacteria cell concentrations
(γ, cells ml–1) and Alteromonas-like cell concentrations (Alt, cells ml–1). Biological variables were log-transformed before analysis 

(N = 27). Highly significant (**p < 0.0005) and less significant (*p < 0.005 to 0.05) correlations are shown
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in nutrient-enriched medium under laboratory condi-
tions are quite different from the in situ assemblage
subjected to variable natural conditions. In our study,
Alphaproteobacteria (Fig. 6) comprised the only group
showing similar percentages in both culture and
natural populations.

Furthermore, while specific groups of Gammapro-
teobacteria, such as Alteromonadaceae, seem to be dom-
inant in literature reports (Table 1), we could not retrieve
them from any site in significant proportions. Other
contradictory data appear in the comparison of natural
and culture samples, e.g. the relevance of the Bac-
teroidetes during the maintenance and 1 yr old culture,
while during the bloom of the same dinoflagellate, A.
taylori, this group was abundant only in the exponential
phase. More inconsistent is the contribution of
Roseobacter in the A. minutum cultures, since in the field
studies this bacterial group contributed a large fraction
to the Alphaproteobacteria, while in the cultures it did
not represent >14%. Caution should be taken with the
extrapolation of observations obtained in laboratory
dinoflagellate cultures to the in situ conditions.

It is important to note that, according to Table 1, the
main bacterioplankton groups appearing with harmful
algal species should be Alphaproteobacteria, particu-
larly Roseobacter, and Gammaproteobacteria, with
few exceptions. These dominant groups are also those
dominating in other phytoplankton blooms, such as
those of diatoms and non-toxic dinoflagellates
(Grossart et al. 2005).

The dominance of Roseobacter within the Alphapro-
teobacteria in the dense Alexandrium minutum bloom
of Arenys Harbour might be considered a notable situ-
ation. Even though Alphaproteobacteria were only
20% of the total DAPI-stainable cells, 100% of the
Alphaproteobacteria hybridised with the Roseobacter
probe. Such high values were not observed at any
other location sampled. The relationship found
between Alexandrium cell abundance and Roseobac-
ter was highly significant (Table 3). Members of the
Roseobacter clade are known to be present and domi-
nant in coastal bacterial assemblages, are ubiquitous
across seasonal and spatial gradients, and have been
found to be prevalent in cultures of Alexandrium
(Adachi et al. 2003, Jasti et al. 2005).

Since our results indicate low specificity in the associ-
ation between HABs and bacteria, then, what deter-
mines the structure of the bacterial assemblages co-oc-
curring with the dinoflagellates? Variability among sites
in the composition of the bacterioplankton has to be ex-
plained just by referring to the common seasonal
changes in the environment (Pinhassi & Hagström 2000),
in the oceanographic conditions, or the physiological sta-
tus of the cells in the bloom. Roseobacter, for example,
were relevant only in the Arenys Harbour situation,

which was sampled in winter. And at our reference sta-
tion at Blanes Bay, Roseobacter has been seen to be a
typical contributor to bacterial assemblage structure
mainly in winter (Fig. 6).

Temporal and spatial studies revealed changes in the
abundances of the main bacterial groups, which co-
varied in relation to the phytoplankton proxy chl a, but
with no significant differences in the relative contribu-
tions of the main bacterial groups to the total assemblage
(Table 3). We previously showed that the Alexandrium
taylori bloom greatly affected the in situ dynamics of the
heterotrophic bacterial abundance (Gasol et al. 2005),
following the daily migrations of the dinoflagellate. We
show here that these effects do not seem to translate
into predictable changes in assemblage phylogenetic
structure, at least at this temporal scale.

As a concluding remark, we hypothesise that the
structure of the bacterial community does not only
depend on the bloom species (toxic or non-toxic) that
produces a bloom, but rather to the seasonal differ-
ences among blooms, having been sampled in winter
(Arenys), versus spring (Olbia Bay) and summer (La
Fosca). Also, an unexplored issue is the nature of the
place where the bloom takes place, e.g. the type of
confined areas (ports, bays, semi-closed beaches), a
variable that was not explored in this study because we
only sampled 1 situation of each type. Relatively simi-
lar bacterioplankton assemblage structures were
found at La Fosca beach and at the coastal reference
station (MOBB). Arenys Harbour and Olbia Bay were
more confined sites in terms of water renewal, where a
particular assemblage different from more open sta-
tions developed as showed in this study. The prevail-
ing oceanographic conditions favour resuspension of
particles, which may subsequently alter the nutrient
status (organic and inorganic) and other aspects in the
harbour. This would generate more microhabitats with
a modified natural hydrodynamic regime (higher
water stability and water residence time). Both factors
are known to be favourable for the development of
toxic dinoflagellate blooms in the Mediterranean Sea
(Maso & Garcés 2006), and, if we are correct, would
also contribute to determining the structure of the
bacterioplankton assemblage.
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