
AQUATIC MICROBIAL ECOLOGY
Aquat Microb Ecol

Vol. 61: 221–233, 2010
doi: 10.3354/ame01484

Published online December 30

INTRODUCTION

Diversity is considered one of the key properties of
ecosystems, necessary to analyze both structure and dy-
namics of communities (MacArthur & Wilson 1967, Mar-
galef 1972, Whittaker 1972, May 1988, Hubbell 2001,
Magurran 2004). This property includes 2 components:
richness, that counts how many different species can be
found in the community, and evenness, that considers
how the individuals in the community are distributed
into the different species. Although a large body of liter-
ature concerning these components of diversity exists for
animals and plants, an understanding of microbial diver-
sity is still lacking. Traditionally, the study of microbial
diversity has been hampered by the difficulties in iden-

tifying individuals. For a long time morphology was the
only criterion upon which to assign individuals to
species. This was clearly useless for bacteria and very
difficult for protists. For example, one particularly inten-
sive study analyzed the diversity of ‘phytoplankton’
(everything seen under an inverted microsope) in the
western Mediterranean Sea. Margalef (1995) deter-
mined around 20 000 individual phytoplankton cells be-
longing to 257 taxa in 260 samples. The 3 most abundant
taxa in the samples, however, were ‘flagellates 1’, ‘flagel-
lates 2’, and ‘flagellates 3’. This raises the question of
whether the diversity indices would have the same val-
ues and whether rank abundance curves would have the
same shape if these dominant taxa could have been sep-
arated into all their component species.
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Molecular approaches seemed to be the solution to
this problem. Application of cloning and sequencing of
PCR amplified 16S rDNA in the last 2 decades has
resulted in thousands of different sequences from the
oceans alone (Hagström et al. 2002). Of course, these
sequences are not species per se and operational taxo-
nomic units (OTUs) of sequences showing arbitrary
levels of similarity have been used instead. But, para-
doxically, most molecular studies have analyzed a very
limited number of individuals (assuming one clone
represents one individual). Most libraries consisted of
only a few hundred clones. Even the most careful stud-
ies barely reached around 1000 clones per sample
(Acinas et al. 2004, Pommier et al. 2007). This is one
order of magnitude less than that in the study by Mar-
galef (1995) and clearly insuficient to draw robust con-
clusions about microbial diversity. Thus, for example,
estimates of the total number of bacterial OTUs in the
ocean have raised much debate, ranging from a few
thousand when based on extensive cloning and
sequencing (Hagström et al. 2002, Hong et al. 2006), to
hundreds of millions by theoretical approaches
(Dykhuizen 1998, Curtis et al. 2002). Furthermore, if a
significant number of species were present in low con-
centrations, the number of clones needed to retrieve
them would be enormous (Pedrós-Alió 2006, 2007). If
the theoretical estimates of richness mentioned above
were true, cloning would be obviously inadequate to
analyze microbial diversity.

More powerful sequencing technologies have recently
become available and have been used to study richness
of marine microbial samples. One such approach con-
sists of obtaining the metagenome of a sample, and
breaking it into small fragments that are then cloned and
sequenced (Venter et al. 2004). Even though the total
number of sequences obtained is enormous, only a small
proportion corresponds to 16S rDNA genes. The in-
crease in taxonomically relevant sequences obtained is,
therefore, small compared to conventional libraries.
Hence, for example, only 4125 rRNA sequences were re-
trieved during the Global Ocean Sampling (GOS) study
(Rusch et al. 2007) which included 811 different OTUs
when clustered at a 97% simliarity level (for the whole
study). Large conventional libraries, in turn, produced
for each sample between 240 and 500 OTUs at the 97%
similarity level (Acinas et al. 2004, Pommier et al. 2007).
The metagenomic approaches have the advantage that
other marker genes can be used for determination of
richness. Thus, Venter et al. (2004) could compare the
rRNA data to the information provided by single copy
genes such as RecA, RpoB and others. In their study,
600 different RecA genes were retrieved compared to
about 450 different rRNA genes. However, this kind of
analysis is not efficient if the purpose of the study is to
analyze diversity and not metagenomics.

Sogin et al. (2006) introduced a different approach
based on an initial PCR step to obtain only 16S rDNA
gene sequences followed by pyrosequencing. This
technique provides hundreds of thousands of reads,
increasing the number of OTUs by at least one order of
magnitude. The approach has been applied to marine
samples a handful of times (Sogin et al. 2006, Huber et
al. 2007, Galand et al. 2009, Gilbert et al. 2009, Kirch-
man et al. 2010), to the microbiota of humans (Claesson
et al. 2009), termites (Engelbrektson et al. 2010), soils
(Youssef & Elshahed 2009), and lakes (Xing et al.
2009). The approach still requires careful evaluation of
possible biases and potential errors (Huse et al. 2007,
2008, 2010, Quince et al. 2009, Reeder & Knight 2009,
Kunin et al. 2010), as well as studies in more ecosys-
tems, but it has already started a whole new era in the
study of microbial diversity. The approach by Sogin et
al (2006) offers, for the first time, the opportunity to
address questions about microbial diversity combining
both a large number of individuals and their identity.

Pedrós-Alió (2006, 2007) suggested that rank abun-
dance curves for bacteria (and likely also for protists)
would show a decaying exponential shape. One impli-
cation of these distributions involved a long ‘tail’ of low
abundant species. This could constitute a ‘seed bank’ of
species that, should environmental conditions change,
could grow and become abundant. Furthermore, con-
ventional sequencing techniques would be only capa-
ble of retrieving the abundant taxa, while pure culture
techniques would retrieve only a few of the taxa pre-
sent, although they could be either abundant or rare.
This long tail of low abundant taxa was coined ‘the rare
biosphere’ (Sogin et al. 2006) and the pyrosequencing
approach proposed in the latter paper provided an
avenue to explore it. Here we analyze pyrosequencing
data from a cruise in the NW Mediterranean Sea where
we sampled a horizontal transect of about 120 km from
coast to offshore and a vertical profile at the offshore
station from the surface to the bottom (2000 m). The
purpose was to test the effects of a significantly in-
creased number of individuals analyzed on the rank
abundance curves and diversity indices of marine
bacterial assemblages, independently of taxonomy.

MATERIALS AND METHODS

Study area and sampling. We sampled a coast to
offshore transect in the NW Mediterranean Sea in
September 2007 (Fig. 1). The Blanes Bay Microbial
Observatory (BBMO, www.icm.csic.es/bio/projects/
icmicrobis/bbmo/), close to the shore, has been the site of
a large variety of studies describing the microbial com-
ponent of the marine plankton. Blanes Bay presents
relatively oligotrophic conditions just 1 km from the
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shore, with moderate allochthonous contributions and
certain oceanic marine water intrusions through the sub-
marine canyon off Blanes (Font et al. 1988). We chose the
BBMO station as the most coastal site of a transect off-
shore. The transect was in an area that has been repeat-
edly studied from different points of view: physical
oceanography (Font et al. 1988, Salat 1996), chemistry
(Doval et al. 2001), phytoplankton (Estrada & Salat 1989,
Estrada et al. 1993, 1999), heterotrophic bacteria (Gasol et
al. 1998, Pedrós-Alió et al. 1999), and
viruses (Guixa-Boixereu et al. 1999). The
transect studied here starts slightly
north of the previously studied transect
to accommodate the BBMO station and
ends at the same open sea station, Stn D
(Fig. 1). But both transects cross the
same water masses and fronts.

Stn A was sampled at about 1 km
offshore (41° 40’ N, 2° 48’ E) on Sep-
tember 20, 2007, and water was imme-
diately filtered through a 200 µm mesh
net. Seawater was kept in 25 l acid
rinsed polycarbonate carboys and
transported under dim light and cold
conditions to the laboratory (less than
2 h). The rest of the transect was sam-
pled on board the BO ‘García del Cid’
during the Modivus cruise (September
20 to 23, 2007). Samples were collected

with Niskin bottles mounted on a rosette with a CTD.
Five stations were occupied and vertical profiles sam-
pled at each station. Water was prefiltered through a
200 µm mesh and immediately processed on board.
The samples chosen for pyrosequencing in the present
study are shown in Table 1, together with date, posi-
tion, depth, and chlorophyll a (chl a), determined as
previously described (Pedrós-Alió et al. 1999). Bacter-
ial abundance and size were determined by flow
cytometry, and bacterial biomass was calculated from
those 2 variables. Bacterial heterotrophic production
was determined by leucine incorporation (T. Lefort &
J. M. Gasol unpubl.).

Collection of community DNA. To collect microbial
biomass, between 5 and 15 l of seawater were filtered
through a 5 µm pore size Durapore filter (Millipore) and
a 0.2 µm Sterivex filter (Durapore, Millipore) in succes-
sion using a peristaltic pump. The 0.2 µm Sterivex unit
was filled with 1.8 ml of lysis buffer (40 mM EDTA,
50Mm Tris-HCl, 0.75 M sucrose) and stored at –70°C.
DNA was extracted by a standard protocol using phe-
nol/chloroform (details in Schauer et al. 2003).

Sequencing and noise removal. The V6 region of the
16S rRNA was amplified with bacterial universal
primers and the amplicons were pyrosequenced with a
454 Life Sciences GS-FLX sequencer at the Josephine
Paul Bay Center, Marine Biological Laboratory in
Woods Hole, MA, USA. The protocols have been
described in detail in Sogin et al. (2006), Huber et al.
(2007), Huse et al. (2007), and on the Visualization and
Analysis of Microbial Population Structures (VAMPS)
webpage (http://vamps.mbl.edu/). For each read from
the sequencer, the primer bases were trimmed from
the beginning and the end, and low-quality sequences
were removed in accordance with Huse et al. (2007).
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Fig. 1. Bathymetric map of the NW Mediterranean Sea
showing the Blanes Bay Microbial Observatory (Stn A), and
the stations sampled (A, C, CM, M, MD and D). The black
line from Barcelona (BCN) to Stn D shows the transect
sampled in past studies (see ‘Materials and methods’ and
‘Discussion’). The Blanes submarine canyon can be seen to

the right of Stn CM

Datasets/ Sampling date Latitude, longitude Sampling Chl a
sample (d/mo/yr) depth (m) (µg l–1)

Coastal to offshore surface transect
A 20/09/07 41° 40’ 0.0’’ N, 2° 48’ 0.0’’ E 0.5 0.12
C 20/09/07 41° 39’ 5.6”N, 2° 48’ 1.3’’ E 5 0.09
CM 21/09/07 41° 24’ 5.9’’ N, 2° 48’ 4.9’’ E 5 0.07
M 21/09/07 41° 9’ 1.3’’ N, 2° 49’ 3.3’’ E 5 0.08
MD 22/09/07 40° 54’ 52.8’’ N, 2° 50’ 43.8’’ E 4 0.10
D5 23/09/07 40° 39’ 4.7’’ N, 2° 51’ 1.6’’ E 5 0.08
Depth profile
D5 23/09/07 40° 39’ 4.7’’ N, 2° 51’ 1.6’’ E 5 0.08
D25 23/09/07 40° 39’ 4.7’’ N, 2° 51’ 1.6’’ E 25 0.09
D65 23/09/07 40° 39’ 4.7’’ N, 2° 51’ 1.6’’ E 65 0.41
D500 22/09/07 40° 39’ 20.4’’ N, 2° 51’ 28’’ E 500 ND
D2000 22/09/07 40° 39’ 20.4’’ N, 2° 51’ 28’’ E 2000 ND

Table 1. Sampling date, location, depth, and chlorophyll a (chl a) for the samples
used for pyrosequencing. See Fig. 1 for station locations. Stn D samples are
numbered according to the respective sampling depth. ND: not determined.

Note that Stn D appears twice
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Sequences were flagged as low quality (1) when they
were <50 nucleotides in length, (2) when the start of
the sequence did not exactly match a primer sequence,
(3) when the sequences contained ambiguous nucleo-
tide assignments with one or more Ns (unknown
nucleotides), or (4) if the first 5 nucleotides of a tag
sequence did not correspond to the expected 5 nucleo-
tides run key (used to sort the pyrosequencing reads).
In addition, the tags were subjected to the precluster-
ing method mentioned in Huse et al. (2010). All se-
quences obtained for the present study are available
at http://vamps.mbl.edu/ and have been deposited in
the National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA) under the
accession number SRP001214.

Tag clustering and normalisation of sample sizes. The
datasets of interest were defined as follows: the coastal to
offshore transect included samples from Stns A, C, CM,
M, MD, and D5; the depth profile included the samples
D5, D25, D65, D500, and D2000, with the number indi-
cating the depth (m). For each dataset, random normal-
ization of sample sizes was carried out using the Daisy-
Chopper tool (Gilbert et al. 2009), based on the smallest
sample (i.e. sample A with 12 628 sequences for the
coastal to offshore transect and sample D25 with 13 435
sequences for the depth profile). Each subsampled
dataset was then clustered in OTUs of decreasing ge-
netic distance using MOTHUR v.10.0 (Schloss et al.
2009) according the furthest neighbor-clustering algo-
rithm. To build the clusters in MOTHUR, we used the
aligned version (April 2010) of SILVA (Pruesse et al.
2007). The resulting alignment was automatically
checked by MOTHUR by calculating the number of po-
tentially misaligned bases using the secondary structure
map available from the greengenes database (DeSantis
et al. 2006). The output at each level for each distance
level was then parsed to produce occurrence tables of
each OTU in each sample at the different clustering lev-
els. We focused our analyses on the unique and 0.03 lev-
els of clustering to assess potential sequencing and/or
PCR errors that may have occurred during the amplifica-
tion and pyrosequencing steps.

Analysis of sequences and comparisons of commu-
nities. Rarefaction curves were calculated using the
online rarefaction calculator software (www2.biology.
ualberta.ca/jbrzusto/rarefact.php). Based on a Bray-
Curtis distance matrix between all communities, hier-
archical clusters for each dataset were performed
according to the complete linkage method, with
increasing number of OTUs from the 0.03 levels of
clustering, using R (R Development Core Team 2008).
We first clustered the 30 most abundant OTUs, then
the 300 most abundant OTUs and finally the 3000 most
abundant OTUs. Pairwise simple Mantel tests on the
distance matrices between the samples were carried

out using the software zt (Bonnet & Van de Peer 2002)
using 9999 permutations.

Calculation of richness, evenness and diversity. Rich-
ness (S) was computed as the total number of OTUs (at
the 0.03 level) in each sample. The Shannon index (H ’)
was used to determine diversity:

H ’ = –Σ pi ln(pi) (1)

where pi = Ni /N, the number of individuals of species i
divided by the total number of individuals in the
sample (N). Finally, evenness was computed with the
Pielou index:

J ’ = H ’/Hmax, (2)

where H ’ is the Shannon index and Hmax is the maxi-
mal possible Shannon index if all the species were
equally abundant

Hmax = –Σ (1/S) ln (1/S) = ln S (3)

where S is the total number of OTUs (richness).

RESULTS

Sequencing and clustering

A total of 201 605 tag sequences of sufficient quality
were obtained along the transect and the depth profile
(Table 2). On average, about 20 160 tag sequences were
obtained per sample. We normalized to the smallest
sample size for the transect (sample A with 12 682 tags)
and the profile (sample D25 with 13 435 tags) data sets
separately. Preclustering the data into unique OTUs
(in accordance with Huse et al. 2010) resulted in a 42%
reduction in the number of OTUs (Table 2, columns 3
and 4). The proportion of singletons in this data set was
52% (Table 2, column 5). We further clustered the se-
quences at the 0.03 difference level (Table 2, column 6),
which caused a modest 12% reduction in OTU numbers
and in the proportion of singletons to 46% (Table 2, col-
umn 7). Despite the successive clustering steps, the num-
ber of OTUs remained within the same order of mag-
nitude (overall reduction in OTUs of 50%, Table 2,
column 8). The most numerous OTUs were represented
by close to 2000 tags, and the average number of tags
per OTU was approximately 15 (Table 2, column 9).

Rarefaction curves

Rarefaction curves were computed for the transect
(Fig. 2A) and the vertical profile samples (Fig. 2B).
These curves allow ranking of the samples in terms of
OTU richness if the same number of tags had been
obtained from all of them. In our datasets, the lowest
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number of tags for a sample was around 13 000. The
curves did not reach an asymptote. Thus, we estimated
the total number of OTUs in our sequence collections
by calculating the SChao index (Table 2, column 10).
The average value was close to 1900 estimated OTUs
per sample. The 2 coastal samples were clearly richer
than the open sea samples along the transect, and rich-
ness increased with depth along the profile.

Patterns of richness and evenness

Richness and evenness were computed and were
plotted against the value of the Shannon diversity index
(Fig. 3A). Evenness and richness increased in parallel.
They were strongly correlated (r2 = 0.876, p < 0.0001).
The evenness and richness indexes calculated for sam-
ple D5 in the transect and the vertical profile were not
exactly equal as a result of different normalization fac-
tors. A group of 3 samples with very high richness and
evenness included the 2 coastal samples from the tran-
sect and the deepest sample from the profile. Two sam-
ples at intermediate depths in the profile (65 and 500 m)
showed intermediate values, and the remaining sam-
ples from the surface open sea and shallow depths of
the profile formed a group of relatively low evenness
and richness. Richness and evenness were plotted
again in Fig. 3B to better show how they changed along
both environmental gradients. Both variables were
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Station 1 2 3 4 5 6 7 8 9 10
Depth Tags OTU OTU Singletons OTU Singletons Overall Tags per SChao

(m) (unique)a (unique)b (%) (0.03) (%) reduction OTU index

A 0.5 14 775 2719 1808 57.1 1534 49.0 56.4 8.2 2659.0
C 5 20 118 3201 1823 65.3 1577 57.8 49.3 8.0 3193.4
CM 5 23 325 1452 654 47.1 599 41.6 41.3 21.1 980.2
M 5 18 067 1313 686 43.4 640 40.6 48.7 19.7 1010.0
MD 4 23 994 1820 880 49.1 799 44.8 43.9 15.8 1349.9
D 5 22 581 1349 679 50.2 632 46.7 46.8 20.0 1289.1
D 25 13 961 1139 777 43.5 677 39.3 59.4 19.8 1082.1
D 65 23 864 2020 1018 48.0 900 43.9 44.6 14.9 1613.9
D 500 24 690 2226 1215 48.2 1073 43.0 48.2 12.5 1637.0
D 2000 16 230 3383 2469 63.9 2065 55.8 61.0 6.5 4156.4

Total 201 605
Average 20 161 2062 1201 51.6 1049.6 46.2 50.0 14.7 1897.1

aUnique OTUs without the preclustering step (see ‘Materials and methods — Sequencing and noise removal’); bunique OTUs
after the preclustering step (see Materials and methods — Sequencing and noise removal’)

Table 2. Summary of total sequences, total operational taxonomic units (OTUs) and singletons in the 10 samples analyzed in the
coastal to offshore transect and in the depth profile. Columns are numbered 1 to 10 to facilitate referencing. SChao is an estimator

of the OTU richness in the sample
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high in the 2 coastal stations and sharply decreased in
the open sea stations. Stns M and MD showed slightly
higher values than Stns CM and D. In the vertical pro-
file, both variables increased with depth, although
evenness increased at shallower depths than richness.

Rank-abundance curves

Rank-abundance curves for the transect and vertical
profile samples were plotted for the 2 sets of samples

(Fig. 4A,B). For clarity, the rank-abundance curves for all
stations are also shown in log-log scales in Fig. 4C,D. The
data set exhibited a very strong dominance by a few
OTUs. The slope of the rank-abundance curves changed
from one sample to the next. This change was progres-
sive and significant both in the transect and in the
depth profile. In the transect, the open sea sample (D5)
showed more dominance and less number of OTUs,
while the coastal sample (A) showed the opposite pattern
with low dominance and higher richness. Similarly, in
the vertical profile, the deepest sample (D2000) showed
less dominance and more OTUs than the surface sam-
ples. This is in accordance with the values of evenness
and richness calculated in the previous section.

Abundant and rare OTUs

The richness of OTUs at the 0.03 difference level that
were found in different numbers of samples in the 2
datasets (i.e. coastal to offshore transect and depth pro-
file) were plotted (Fig. 5). Remarkably, about 4000
OTUs (ca. 70%) were found in only 1 sample, in each
of the 2 datasets, while only 250 (4%, transect) or 72
(1%, profile) OTUs were found in all the samples
within each dataset.

Comparison among samples 

A Non-Metric Multidimensional Scaling (NMDS) plot
of the samples analysed based on the pairwise shared
OTUs was constructed (Fig. 6). In the transect, the 2
coastal stations formed a cluster, while the open sea sta-
tions from the mixed layer formed a separate one. In the
case of the vertical profile, the 2 samples from the sur-
face photic layer clustered together, while samples
from the other layers were different from each other.

To determine the number of abundant OTUs needed
to group the different samples, we carried out a cluster
analyses for the 2 datasets considering an increasing
number of abundant OTUs (Fig. 7). In the case of the
transect, the 30 most abundant OTUs were sufficient to
cluster the samples in the same way as with 3000. In
the case of the vertical profile, the 300 most abundant
OTUs were necessary for the same outcome. When
Mantel tests were carried out, all distance matrices
turned out to be significantly correlated (p <0.001).

Relationships with biomass and production

We did not find any relationship between our diver-
sity indices and chl a. Concentrations along the transect
were uniform, around 0.1 µg l–1, but diversity ranged
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from some of the highest values at the coast to the low-
est at Stn D. The vertical profile had similar values of
chl a at the 2 surface samples, the highest concentration
at the deep chlorophyll maximum (sample D65) and
was zero at the 2 deepest samples. However, diversity
increased from the surface to the bottom. In summary,
there was no relationship between diversity and chl a.

The relationships of richness and evenness with bac-
terial biomass and heterotrophic production were also
analyzed (Fig. 8). The 2 richest samples (C and D2000)

had higher production to biomass (P/B) ratios, but
there was no clear relationship between richness and
the P/B ratio for the other samples (Fig. 8A). Both rich-
ness and evennes were inversely correlated with bac-
terial biomass (Fig. 8B). Evenness showed a very good
negative correlation with heterotrophic production
(r2 = 0.781, p = 0.0036 with 1 point excluded). Likewise,
richness generally decreased with production: the
relationship was not as good, and there was 1 clear
outlier: sample C (Fig. 8C).
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DISCUSSION

Diversity of microorganisms, including phytoplank-
ton (Margalef 1995, Estrada 2008), ciliates (Dolan &
Marrasé 1995, Dolan et al. 1999), bacteria (Acinas et
al. 1997, 1999), and archaea (Galand et al. 2010), has
been particularly well studied in the area of the pre-

sent work (shown in Fig. 1). Thus, an objective of this
study was to analyze whether the observation of more
individuals confirmed, rejected, or somehow expanded
what was known from conventional diversity studies in
the Blanes Bay. The pyrosequencing technology offers
the possibility to analyze at least one order of mag-
nitude more individuals from a microbial community
than is possible with conventional cloning and se-
quencing. Moreover, the number of individuals (se-
quences) analyzed is also much larger than what is
usually analyzed in typical studies of diversity.
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Spatial patterns of diversity 

Both the NMDS and the cluster analysis showed that
surface samples formed 2 independent clusters: coastal
and open sea. The 2 coastal stations had very high val-
ues of diversity. Both stations were over the continental
shelf and were separated from the open sea stations by
the shelf front. On the other side of the front, the open
sea samples grouped together. They all had lower val-
ues of diversity. The D25 sample also clustered with
this group. This was expected since it was within the
mixed layer. The D65 sample, on the other hand, was
in the deep chlorophyll maximum and, accordingly,
did not join the surface cluster. However, it was more
similar to the surface than to the deep samples. Finally,
the deep samples clustered separately. The D2000
sample, in particular, had the highest diversity of all
the samples. Both the NMDS plot and the dendro-
grams showed that differences among surface samples
were smaller than among samples differing in depth.
The observed clustering of samples is what could be
expected from previous studies of microbial diversity.
For example, Díez et al. (2004) found that diversity of
picoeukaryotes changed more with depth than along
surface transects in the Southern Ocean. They also
observed that samples taken within the same water
masses clustered together. Thus, similar assemblages
could be found for 100s of kilometers as long as no
fronts were crossed, but communities changed abruptly
when an oceanographic front was crossed. The differ-
ences between bacterial communities on both sides
of an oceanic front have also been observed in other
marine regions (Pinhassi et al. 2003, Hewson et al.
2006). Along the ‘standard transect’ in the NW Medi-
terranean Sea, Acinas et al. (1997, 1999) found that
their coastal station and Stn D were clearly distinct,
and that the biggest differences were found between
surface samples and deep samples. Similar results
were found in an area of the NW Mediterranean Sea
north of Blanes (Ghiglione et al. 2005). These patterns
were the same as those that we found for bacteria in
the present study: larger differences with depth than
along the surface, and changes in composition when
oceanographic fronts were crossed.

Díez et al. (2004) carried out their study with dena-
turing gradient gel electrophoresis (DGGE) and, there-
fore, with a very limited number of OTUs (around 30
per sample). The same was true for the study of Acinas
et al. (1997, 1999) and the others mentioned above.
Yet, the main conclusions were similar. In the present
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study, we analyzed increasing numbers of OTUs, from
30 to 3000, to see how this would affect the clustering
of samples. In the case of the coastal to offshore tran-
sect, the 30 most abundant OTUs were sufficient to
obtain the same clustering as with 3000 OTUs. In the
case of the vertical profile, the 300 most abundant
OTUs were required for the same outcome. In addi-
tion, when a Mantel test was carried out, even the dis-
tance matrices giving the different clustering of sam-
ples were significantly correlated. This explains why
the fingerprinting approaches were sufficient to clus-
ter the samples appropriately despite the fact that they
could not retrieve most of the richness in the samples.
There is one caveat, however, since we do not know
whether the same clustering would have been ob-
tained with for example, 30 000 OTUs. This will have to
wait for more intensive sequencing projects.

When assessing diversity using conventional cloning
and sequencing, the number of OTUs is usually higher
than with fingerprinting techniques. Kemp & Aller
(2004) combined data from clone libraries of similar
ecosystems and computed rarefaction curves (see their
Fig. 7). The total number of clones examined ranged
from 60 to 300 approximately. None of the curves
reached a plateau. Calculation of the Chao 1 estimator
of richness provided values under 300 OTUs in all
cases. Similar numbers were found for clone libraries
from the BBMO (Alonso-Sáez et al. 2007). Therefore,
one could expect that examining around 13 000 indi-
vidual sequences (as done in the present study) would
allow reaching a plateau in the rarefaction curves at
around 300 OTUs. Rarefaction curves, however, were
not asymptotic. Further, the calculated Chao 1 indices
had values ranging between 1000 and 4000 OTUs (one
order of magnitude higher than those of conventional
clone libraries for equivalent 97% similarity levels of
clustering, Table 2, column 10). This indicates that
compared to pyrosequencing, conventional clone
libraries are often too small for good estimations of
richness of bacterial assemblages. In fact, the shape of
the rarefaction curves indicates that the actual richness
was even higher than what was retrieved in the pre-
sent effort. So that even estimates from sequencing
13 000 individuals are far from revealing the real rich-
ness of bacterial assemblages.

Evenness and richness indices

The samples with higher richness were also those
with the highest evenness, although the exact relation-
ship showed some variation along the coastal to off-
shore transect and the vertical profile. Different ex-
planations have to be invoked to explain finding the
highest diversity values in the coastal and deep sam-

ples, respectively. One notion is that stable ecosys-
tems, such as tropical rainforests or coral reefs, tend to
have higher diversity. The deep sample fits this
description. On the other hand, higher diversity can be
found at ecotones and this is what could be expected
for the coastal stations, where land influence would
interact with deep waters from the Blanes canyon
potentially generating more ecological niches.

When standard diversity indices were computed, the
values found were higher than those previously
reported in the literature (Fig. 3A). We can compare
them to those computed for tintinnid ciliates (Dolan &
Marrasé 1995, Dolan et al. 1999) and phytoplankton
(Estrada 2008) along a transect in the same area as that
covered by the present study. The rank abundance
curves of all these microorganisms have the same
shape as those found here for bacteria. In the latter
study, the deep chlorophyll maximum community was
more species rich than the surface community. This is
also what we found in the present study: the D65 sam-
ple from the Deep Chlorophyll Maximum (DCM) was
richer than the D5 and D25 surface mixed layer sam-
ples. The values of the Shannon index found, however,
were much lower than those found here. They ranged
from less than 1.5 at the surface to 3.5 at the DCM,
while ours were all above 5. Interestingly, the only
study displaying higher diversity indices with values of
the Shannon index over 7 was reported for marine viral
communities using 1061 sequences from a viral shot-
gun genomic library (Breitbart et al. 2002).

Rank-abundance curves

Another point of interest is whether the shape of
rank-abundance curves is an artifact of a low number
of individuals sampled. While around 2000 individual
tags represented the most abundant OTUs in our sam-
ples, most OTUs were doubletons or singletons (46%),
which exceeded 1000 OTUs among the 10 samples.
However, even if the OTUs represented by 1, 2, or
even 3 tags were eliminated from the analysis to avoid
potential artifacts, the shapes of the rank abundance
curves would not change dramatically. The abundance
of OTUs spanned 3 orders of magnitude. After exami-
nation of about 19 000 tags, the curves obtained did not
resemble any of the established models (Fig. 4). Nei-
ther the broken-stick nor the normal distribution mod-
els fit our data. The geometric series would fit the first
part of the curves, but it would miss the long tails com-
pletely. This lack of fit indicates that at least some of
the assumptions on which the established models are
based are not valid for bacteria.

The rank abundances curves presented here were
very similar to those found for phages (Breitbart et al.
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2002). These authors could fit a power-law function to
their data. Furthermore, this pattern was confirmed
afterwards in a new type of power law model modified
from the version of Lotka-Volterra predator–prey
dynamics to explain how phage–host interactions keep
OTUs cycling through time and ranks (Hoffmann et al.
2007). It is intriguing that the same model should fit
bacterial data, despite the fact that the relationship of
the latter to their food source is completely different
from that between phages and their hosts.

Diversity–productivity relationship

There has been considerable discussion about
whether there are relationships between diversity and
productivity (Rosenzweig 1995, Mittelbach et al. 2001,
Drake et al. 2008). The relationship has been found to
be linear and positive, linear and negative, U-shaped
or hump-shaped depending on the organisms and sys-
tems studied. In such studies, chl a is often used as an
estimator of productivity. We did not find any relation-
ship between our diversity indices and chl a and, thus,
presumably there was no clear relationship between
diversity and primary production. In a study of several
mesocosms with a gradient of productivity, Horner-
Devine et al. (2003) did find a hump-shaped relation-
ship between algal richness and chl a but no relation-
ship between bacterial richness and chl a. However,
these authors found different (and significant) relation-
ships between the richness of certain bacterial groups
and chl a. In our study, samples along the vertical pro-
file were not directly comparable because the dark
samples belonged to a different ecosystem than the
surface samples and, therefore, there was no reason to
expect a relationship. The transect samples, despite
being comparable, did not show a relationship. A
much larger sample set will have to be analyzed with
the same methods in order to clarify this issue.

It has been proposed that the most diverse communi-
ties would have the lowest production/biomass (P/B)
ratios (Margalef 1968). A mature forest, for example,
holds a lot of biomass in the form of wood that does not
contribute to production. A prairie, on the contrary, has
very high production with little biomass. In this exam-
ple, the diversity of plants in a mature forest would be
larger than that of a prairie.

We compared our values of diversity with those of
bacterial biomass and heterotrophic production deter-
mined in the same samples. The results did not show
the expected relationship. Rather, the samples with
highest diversity values also had the largest P/B ratios.
In fact, this was due to the 2 most diverse samples:
samples A and D2000. The other samples did not show
any clear relationship to P/B. We decided to look at the

relationships with biomass and heterotrophic produc-
tion separately. Both richness and evenness showed
negative relationships with both biomass and produc-
tion. The only exception was the coastal surface sam-
ple that had the highest production together with a
very high diversity. Likely, the plant model is not
appropriate for bacteria or microorganisms since, in
the case of plants, most of the biomass is non produc-
tive. In bacterial assemblages, increasing production
results in increased biomass (predation apart). Even
though many of the bacteria may not be active at any
particular time, bacteria do not accumulate large
amounts of unproductive biomass, such as wood. Our
rank abundance curves showed that higher production
correlated with more dominance and, therefore, with
lower richness and evenness.

CONCLUSIONS

This study of a marine area by the powerful pyro-
sequencing technology confirms that bacterial rich-
ness is very large, that rank-abundance curves show a
very long tail of rare taxa, and that the signature com-
position of bacterial assemblages can be retrieved from
the most abundant taxa, thus making comparison with
less powerful techniques possible.
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