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Absrract: We exaniined twelve temporal series of phytoplankton abundance in a diverse set of marnine and freshwater habitats
using semi-variogram analysis coupled with a stochastic discrete-time {daily) Gompertz model. The analysis revealed a very
good cormespondance between the theoretical semi-variogram function and the empirical semi-variograms. The estimated
density-dependence parameters were remarkably similar in the various series and implied very weak regulation in phytoplank-
ton abundance. Our results suggest that the magnitude of the daily variation in growth rates induced by density-independent
factors increases wilh nutrient availability, The model also describes the general form of the mean-variance {temporal)} relation-
ship and is ncarly identical to the empirical equation,
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Réxumé: Nous avons éludié douze séries temporelles qui ont trait 4 'abondance des populations phytoplanctoniques dans un
ensemble dhabitats marins el d'eau douce, & 'aide d'une analyse des semi-variogrammes jumelée & un modéle stochastique
de Gomperiz en temps [ini {quotidien). L'analyse a fait ressortir une bonne cormespondance entre la fonction théorigue du
sermi-variogramme et les semi-variogramimes empiriques. Les paramétres reflétant la dépendance 2 la densité étaient tréy
similaires entre les séries, ce qui impligue une trés faible régulation des populations phyloplanctonigques. Les résultats
indiquent gue I'étendue des varialions du taux de croissance nette associée 4 des facteurs indépendants de la densité augmente
avec la disponibilité en éléments nutritifs. Le modéle déent aussi la nature de la relation moyenne-variance {dans le temps) et

il s'avére presque identique & 1'équation cmpirique.
Maots-clés: phyloplancilon. dynamique, semi-variogramme, Gompertz, modéle stochastique, densité-dépendance.

Introduction

The temporal dynamics of the tolal biomass of natural
lake phytoplankton populations are traditionally depicted as
a sequence of smooth waxes and wanes driven by the
opposing forces of nutrient inputs and grazing control
(Wetzel, 1983; Goldman & Horne, 1983; Sommer, 1986).
Although heuristically appropriate, this approach has rein-
forced the simplified view that short-term fluctuations in
algal abundance are but random noises superimposed on the
main signal and researchers have consequently treated these
fluctuations with little interest. However, there is mounting
evidence that even rapid changes in population growth or
decline may be the result of robust dynamic relationships
between algae and zooplankton (McCauley, Murdoch &
Watson, 1988; Murdoch & McCauley, 1985), and between
algae and the available nutrient pool (Prairie & Marshall,
1993). Yel, with the many compartments of the pelagic tood
web interacting even al short time scales (Carpenter, 1988),
regular and predictable properties of the temporal dynamics
of algae have remained difficult to discern and characterize.
Periodic oscillations are sometimes observed in experimental
ponds (McCauley & Murdoch, 1987), but rarely in natural
systems. Indeed, in the most comprehensive compilation of
phytoplankton time-series assembled to date {Marshall &

'Rec. [995-08-02; 1996-05-01.

Peters, 1989}, even the supposedly 'omnipresent' spring and
fall blooms of freshwater algae are but weak and inconsistent
signals amidst the remaining fluctuations occurring through-
out the year, particularly in oligotrophic waters (Sommer ef
al., 1986). On the other hand, there is little doubt that phyto-
plankton biomass does not follow a purely indeterminate
course, The key problem has been, and continues to be, the
identification of general patterns in the dynamical behavior
of phytoplankton, such as the presence and strength of density-
dependent regulation (Murdoch, 1994).

Although the dynamics of phytoplankton have been
studied on time scales ranging from shorl to long-term
(Harris, 1980; 1986; Reynolds, 1984; 1990; Gaedke &
Schweizer, 1993), the current view suggests that different
processes predominate at different time scales, However, in
spile of these real differences. the phytoplankion characteris-
tically displays an apparently unique anti-persistent temporal
signature (Prairie & Duarte, in prep.), suggesting that a
single model may be sufficient to describe adequately at
least some of the salient features of phytoplankton dynamics
in most systems. In the case of stationary phenomena, anti-
persistence is essentially synonymous with density-dependent
population growth. Hence, phytoplankton temporal dynamics
may be governed at least in part by density-dependent
processes, the strength of which may be characteristic of
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these communities.

Here, we use a semi-variogram analysis to examine
twelve temporal series of phytoplankton abundance
obtained from a broad spectrum of aquatic habitats. The
ecosystems were sampled at variable time resolution (days
to weeks) and extent {one season to decades) and ranged
from oligotrophic marine sites Lo eutrophic freshwater lakes.
The two main goals were (£) to test whether consideration of
density-dependence may reveal common key characteristics
of the dynamics applicable to most systems, and (if)
whether these properties can be predicted on the basis of a
single simple dynamical model. We felt that examining
several algal communities would provide a better indication
of the general prevalence of density-dependent regulation in
these systems than a more detailed analysis of a single
population (Murdoch, 1994),

Methods

DATA SOURCES

Temporal scries of phytoplankton abundance (as
measured by chlorophyll a concentrations) were assembled
from various published and unpublished sources (Table I).
Our choice of chlorophyll @ as a measure of the abundance
of the algal community was based on its widespread avail-
ability and good precision in its measurements. We recognize
that it is an imperfect measure of abundance in that its
concentration in algal cells is variable among taxa and can
be influenced by light availability (Canfield, Linda & Hodgson,
1985). Nevertheless, we feel that it is the best variable
available to test our hypotheses. The time-series varied in
length (1 field season to 10 years) and in sampling frequency
(daily to bi-weekly). Although some series were sampled at
inconsistent sampling intervals, most series had a characteristic
sampling frequency (daily, weekly, or bi-weekly). We accepted
time-series whose lengths covered al least 65 times its charac-
teristic sampling step, although the average time-series
covered > 200 times its characteristic sampling interval,
The ecosystems represented by the time-series cover a wide
range of habitats. from the oligotrophic marine Bay of
Blanes (northwest Mediteranean Sea) to small (Lake Brome,
Québee) and large (Bodensee [Lake Constance], Germany-
Switzerland-Austria) eutrophic lakes. In our analysis, we
considered the threc daily chlorophyll time-series obtained
at different depths from Lake Cromwell (Québec) as inde-

pendent because of the strong vertical differentiation of
their phytoplankton communities (Prairie, unpubl. data). A
summary of the main characteristics of the time-series is
given in Table L.

EMPIRICAL SEMI-VARIOGRAMS

We unalyzed the structure of the time-series by con-
structing semi-variograms for each individual series. A
semi-variogram is simply a plot of the (semi-)variance
among observations distant by a time interval k& as a function
of /i itself (sce Robertson, 1987; Isaaks & Srivastava, 1989).
Typically, semi-variograms are posilive at shor time scales
{indicating that observations close in time are more similar
than observations far apart in time), but the variance gradually
reaches a plateau (the sill) corresponding Lo the maximum
variance of the system (Figure 1). The lime required to
reach the sill is often referred Lo as the range of the semi-
variogram and can serve as a usclul measure of a characteris-
tic fime scale of the underlying process. For many empirical
semi-variograms dealing with natural phenomena, although
the semi-variance among measurements taken at time intervals
i does increase with A, this variance is not nil when the
trend is extrapolated to the origin (at # = (). The semi-variance
at 2 = 0 is referred to as the nugget variance (Figure 1}, and
is the combined result of natural variability phenomena
(Prairie & Marshall, 1995), such as spatial heterogeneity,
and measurement error (Isaak & Srivastava, 1989), Semi-
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TaBLE 1. General characteristics of the time-series examined, ~ indicates marine systems. N is the number of observations

Length of N

General characteristic

System Sumpling Mean (var) Phosphorus Source

interval time-series Chla (ug/L) (ug/l)
Bay of Blanes” Weekly ~ 3 years 243 0.84 (.755) 95 Oligotrophic marine bay this study
L. Blue Chalk Weekly 5 years 142 1.90 (4.25) 5 Mesatrophic lake Marshall, 1987
Bodensee Weekly 12 years 498 4.7(3L.8) 55 Large mesotrophic luke unpubl. data
L. Brewer Weeldy - 5.5 years 141 26.7 (588) 60 Small eutrophic lake Marshall, 1987
L. Brome Weekly ~ 5 months 109 15.9 (246.5) 18 Small eutrophic lake this study
Bay of Cadiz" Bi-weekly ~ 19 years 330 1.85 (1.36) 45 Marine embayment unpubl. data
L, Cromwell (0 m) Daily 66 days 66 4.9 (4.3) 10 Small dystrophic lake this stady
L. Cronuwwell {1 m} Daily 60 davs 66 5.5 (6.0 10 Small dystrophic lake this study
L. Cromwell {2 m) Daily 66 days 66 6.7 (12.4) 10 Small dystrophic lake this study
Humilton Harbour Daily ~ 3 months 90 4.7 (645 12 Mesotrophic embayment Harris, 1987
L.. Memphremagog Daily 135 days 135 330241 13 Large mesotrophic lakes Marshall, 1987
Tasmania” Weekly ~ 3 veurs 127 1.51 {0.83) 17 Coastal Clementson e al., 1989
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variograms contain much information about the temporal
dynamics of a variable although the underlying dynamical
process can only be deduced by inference or by comparison
with theoretical semi-variogram functions derived from a
model {see below). The empirical semi-variograms were
computed on the /n-transformed chlorophyll concentration
data using the software GS+™ where each semi-variance
value is calculated as

S()= 5 - S [in(e.,) - ()] [1]

Because the nugget variance represents variability
induced by factors other than the underlying dynamical
process, the estimated nugget variance was subtracted from
all the semi-variance values of the corresponding time-
series. Note that, although preferable, it is not necessary for
the time-series to be sampled at a regular time interval.
Semi-variogram analysis is particularly well suited to
examine the dynamical behavior of time-series sampled
with variable intensity. Nevertheless, we accepted only
semi-variance values when obtained from 30 observation
pairs or more, thereby insuring a sufficient robustness of the
analysis.

THE MODEL

We developed a simple stochastic model purporting to
reflect the dynamical process undetlying changes in phyto-
plankton abundance. The model's performance was subse-
quently tested by deriving the theoretical semi-variogram
function from the model, and then examining its correspon-
dance with the empirical semi-variograms.

Given that one can reasonably assume the long-term mean
abundance is fairly stable within lakes, the anti-persistent
behavior of all the phytoplankton time-series examined by
Prairie & Duarte (in prep.) clearly point to a mean-reverting
process (Peters, 1994), which, for bielogical populations, is
best conceived as density-dependent population growth. We
thercfore attempted to describe our time-series using one of
the simplest and most flexible density-dependent models
found in the literature. By flexibility, we imply a model that
can digplay different strengths of density-dependence in
growth. The model is a discrete-time difference equation of
a first-order process known as the Gompertz maodel (Nisbet
& Gurney, 1982) with a one day time step, and which
relates population growth rate (R) to phytoplanklon density
(P) as a power function such that

R =oR" (2]

where R, is the population growth rate at time ¢ (P, ,/P,), P,
is phytoplankton density (as mg Chlorophyll ¢ m™) at time ¢
and o and f are constants. Our choice of the time step
(daily) was based on the short turnover time of most popu-
lations and on our interest in cxplaining short- to medium-
term fluctuations. In addition. given the light dependence of
photosynthetic activity, the daily interval seemed a natural
discrete time step. Density-dependent growth occurs when
B < 1 and the magnitude of the departure of f3 from unity
increases with the strength of the density-dependence of
population growth. We favored this model over the more
popular logistic-type model because it allows for both weak
and strong density-dependent forces. Objections have been
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raised against this model on the grounds that the net popula-
tion growth rate is theoretically unbounded (Royama,
1992). However, this concern is not always justified if the
observed or predicted growth is always below the physio-
logical maximum growth rate of the population examined.
In logarithmic form and given that R, = P, ,/P,, this model
can be expressed as the linear equation

n(P.,)=mn{c)+Bin(R) [3]

the form of which can be recognized as analogous to a
Ricker-type model where the log population abundance at
one time step is a linear function of the previous log abun-
dance. In this pure density-dependent process, the popula-
tion reaches asymptotically a stable abundance value of
e o/B more or less rapidly depending on the exact value of
B. As such, the model will be unrealistic in that no phyto-
plankton population has ever been observed to remain truly
stable but rather displays large fluctations and often aperiodic
cycles. Indeed, most chlorophyll time-series show erratic
trajectories in both the short and medium terms (Marshall &
Peters, 1989). We thus postulate that the log growth rate
would not only be a function of density but also of other
factors which can collectively be represented by a stochastic
and, we assume, Gaussian perturbation term u (M Q,var(u)])
such that

in{R)= a'+(ﬁ - l)ln(F:] +u, [4]
or
In(P, )= o'+Bin{B)+u, [5]

where o is In(c). The variance in u (var(u)) is 4 measure of
the range within which daily population growth rate can
vary due to factors other than the density-dependent
process. The model can be expanded to yield a stochastic
equation describing population density at any future step in
time (see Royama, 1992) as
h
E[in(p,,)]=in(B)B" + F{(]l—ﬁ)

(O,"+L£)‘| [6]

If this model is an adequate representation of the
process generating phytoplankton dynamics and assuming
< 1, then several general properties ol the ensuing time-
serics can be predicted a priori:

(1} the frequency distribution of the observed phytoplankton
abundances will be log-normal,
(2) the long-term mean for the /n-transformed phytoplankton
abundance will be stable at

-

E[in(P)]= —ﬁ__l [7]
and for the raw values at
=i’ ‘:W{i
E(R) =1 )

(3) the long-term variance for the log-transformed phyto-
plankton abundance will be

mr[lﬂ(F;)J = var(d)

-8

(9]

or for the raw data
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[’ﬂ\ [n-a_r(n;]] | mm:r]
var(P) = F R PR | [10]
(4) the model allows one to predict the exact shape of the
semi-variogram resulting from the model. For our model
(equation 5) the theoretical semi-variogram function S7(h)
of the /n-transformed data can be derived to be

ooy var(u) gy var(u) Y
S(h)_l_ﬁ2(1—e ]——I_ﬁ2(1 B [11]
where h is the time-step (days). Equation 11 can be recognized
as an exponential semi-variogram function commonly used
in the geostatistical literature (1saak & Srivastava, 1989) for
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which the sill is reached asymptotically. The practical range
of an exponential semi-variogram function (Ze., the time
scale at which 95% of the total variance is reached) can be
calculated as [n(0.05)/in(B). To illustrate the diversity of
dynamical behavior the Gompertz model is capable of
generating, we used cquation § to simulate 4 year-long
time-series with different strengths of density-dependence
(f-values of 0.3, 0.5, 0.7, and 0.9) and a constant var{(u)
parameler. The model can produce quite diverse time-series
(Figure 2), with the characteristic time scale (as given by
the range of the corresponding semi-variogram, Figure 2)
increasing as the extent of density-dependence relaxes.
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FIGURE 2. Simulated time-series (centered) and their corresponding theoretical semi-variogram function (equation 11) generated from the model equa-
tion 5 {or 4 values of 8 (0.3, 0.5, 0.7. and 0.9} and an arbitrary but constant value of var(u) (0.04),
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MODEL TEST

Models such as equation 5 are typically tested by
examining the fit of a regression of In P, on In P, or its
analog, a regression of /# r, on /n P.. However, the statistical
detection of density-dependence is not an easy matter
{Murdoch, 1994) and there are several known caveats to
this approach: (1) even a very poor regression relationship
between In r, and In P, does not necessarily indicate that the
density-dependence is unimportant and (2) regressions
based on ordinary least-squares will virtually always produce
slope parameter estimates well below one even if the true
underlying process (such as that produced in a simulation)
is a pure random walk (¢ = 0 and S = 1) (Royama, 1992).
Although not widely recognized, this is essentially a problem
of least-squares procedures and this downward bias could
be corrected for using structural equation estimation tech-
niques (Fuller, 1987; Prairie, Pelers & Bird, 1995), but even
those particularly suited for time-serics analysis (Prairie &
Marshall, 1995) may be difficult Lo apply in the present
context because of the unstable error structure under various
differencing values.

Instead, we tested the applicability of the model
through its theoretical variogram function (equation 11), by
cxamining the fit of this function to the empirical semi-vari-
ograms produced for each system. This allows for a very
robust and sensitive test because small deviations in the
cbserved versus predicted semi-variograms are readily
apparent. Only two parameters are needed to lully describe
the theoretical semi-variogram (equation 11): f and var(u).
Of these, var{u) can be estimated empirically as the semi-
variance at # = 2 (where S[h]= var[u], see equation 11),
which thus leaves only the strength of density-dependence
(f) to be statistically fitted using standard non-linear least-
squares techniques.

Results

(GENERAL PROPERTIES

The time-series showed a wide array of temporal patterns
ranging from relatively smooth curves (e.g., Lake Memphre-
magog) to erratic trajectories (e.g.. Cadiz) (Figure 3). Mean
chlorophyll values ranged from 0.8 to 27 ug/L. with temporal
variance varying from 0.73 to 588 (Table I). For 3 of the
time-series (Lake Cromwell 0 m, 1 m, and 2 m), the chloro-
phyll time-courses were clearly not stationary. As this will
greatly bias the shape of the semi-variogram, these data
were detrended from their linear component prior to the
semi-variance analysis, a common remedial procedure in
time-series analysis (Fuller, 1976).

As a first qualitative test of the model, we examined
whether the frequency distribution of the phytoplankton
abundances followed the predicted log-normal distri-
bution. As a rule, our data, as other studies have shown
{Harris & Piccinin, 1980; Heyman, Ryding & Forsberg,
1984), were indeed much better described by a log-normal
distribution rather than a symmetrical one (e.g., Bodensee
and Tasmania, Figure 4). Although consistent with the
prediction ol the models, this agreement is but a very weak
test. Semi-variogram analysis provides a much stronger
validation.

ECOSCIENCE, vor. 3 (4), 1996
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SEMI-VARIOGRAMS

A visual examination of the semi-variograms shows
that most time-series display the expected exponential
model shape (Figure 5). The solid lines represent the func-
tion given by equation 11 for which var(u) was the semi-
variance value at 4 = 2 and f was statistically fitted using
non-linear least-squares. Although the correspondance
between theory and observation is generally adequate for
most of our phytoplankton time-series examined, some
systems exhibited a certain lack of fit. For example, the

model for Blue Chalk Lake clearly underestimated the vari-
ability at time-scales longer than 100 days. Similarly, the
empirical semi-variogram for Lake Brome was more of the
Gaussian than exponential type, with an inflexion poinl near
the origin. In some cases, the semi-variances temporarily
decreased passed the sill. The time-scale at which S(4) is a
minimum is indicative of the length of a periodic cycle. In
our analysis, such apparently periodic components can be
observed for the Bay of Blanes, Lake Cromwell (0 m), and
Lake Memphremagog. However. it is doubtful that all can
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Ficire: 5, Temporal semi-variograms of the twelve time-series examined with the fitted theoretical semi-variogram function {equation 11},
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be correctly interpreted as evidence for a periodic oscilla-
tion and probably & simple reflection of the short length of
the time-series relative to the cycle length found. For example,
the apparent cycle of period ~ 40 days in Lake Memphre-
magog (Figure 5} is clearly the result of only one such cycle
within the 135 days of the time-series (Figure 3).
Simulations {not shown) using time-series generated using
equation 5 as the underlying model (i.e., without any
periodic component) show that such 'cycles’ are very likely
to be seen over relatively short runs of data. Under the same
process but for long simulation runs however, these cycles
are no longer apparent in the semi-variograms. This under-
sampling artifact can account for the observed periodic
component of the variograms for Lake Memphremagog and
Lake Cromwell as they are both daily time-series based on
only 135 and 66 observations, respectively. However, there
appears to be a strong periodicity in the Bay of Blanes with
a cycle length of about 60 days. In these cases, the theore-
tical semi-variogram functions are expected to capture only
the mean trend once the sill is reached.

In general however, our model successfully reproduced
key properties of the semi-variograms, such as the height of
the sill relative to how quickly it is reached, a feature not
very flexible in the theoretical semi-variogram function
given that only one parameter () is fitted. Indeed, since
var(u) is empirically determined ([rom STh] at & = 2), equa-
tion 9 shows that the fitted parameter 8 must simultaneously
depict both the maximum variance value (the sill) and the
time necessary to reach it (the semi-variogram range, Le.,
in[0,05)/in[f]). Examination of the empirically determined
var(u), the fitted f§ parameter estimates and the semi-vari-
ogram ranges {Table 1) reveals that the resulting f3 values
were all high (close to 1) and similar in the different systems,
ranging only between 0.92 and 0.99.

TaBLE 1I. Estimated parameters S and var(u) of the Gompertz
model for the different time-series analyzed. The semi-variogram
range is calculated as (n(0.05)/In( ) and is in days

Sys'em B . vaw  Range{days)
Bay of Blanes 0.943 0.061 51

L. Blue Chalk 0.996 0.005 > 2 years
Bodensee 0.936 0.070 67

L. Brewer 0.940 0.13 48

L. Brome 0.982 0.020 165
Bay of Cadiz .976 0.0079 123

L. Cromwell () m) 0917 0.037 a5

L. Cromwell (1 m} (1.923 0.030 38

L. Cromwell (2 m} (.935 0.037 45
Hamilton Harbour 0.914 0.038 33

L. Memphremagog 0.920 0.03 36
Tasmania 0.017 67

0.956

FACTORS INFLUENCING VAR({/) AND THE APPARENT STRENGTH
OF DENSITY-DEPENDENCE {f3)

The variance in u in our model is a measure of the
magnitude by which factors other than density-dependence
can affect daily community growth rate. In our analysis, the
observed var{u) ranged over 25 fold, with the highest value
(0.13) found in the most eutrophic system (Lake Brewer)
and the lowest (0.005) in the mosl oligotrophic lake (Lake
Blue Chalk). Although this clearly suggests a relationship
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with trophy. a log-log scatter plot of var(u) versus mean
chlorophyll was not significant. However, when we examined
the relationship with a measure of the available nutrient
pool (total phosphorus concentration), we found a clearer
trend except for the Bay of Cadiz (Figure 6a). We suspect
that this site behaved differently from the others because the
phytoplankton there is not phosphorus-limited given that
most (> 80%) of the phosphorus is dissolved (A. Gomez,
pers. comm.). Although more data are necessary to confirm
this patlern, our results suggest that the size of the available
nutrient pool may play a role in determining the possible
extent of variation in daily population growth,
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FiGURE 6. a} Scatter plot of var(i) versus total phosphorus concentra-
tion (mg/L) (log-log scale), b) Scatter plot of the estimated 3 parameters
and In{var{ul).

Although our analysis shows a remarkably narrow
range in the estimated B parameter, the great precision
afforded by the semi-variogram technique permitted the
examination of possible factors influencing the apparent
strength of density-dependence. In particular, we found that
our measure of the external variability in daily growth rate
(var[u]} could explain 48% of the variability in the estimated
B parameter (Figure 6b), so that increasing dependence of
phytoplankton biomass on short-term environmental condi-
tions relaxes the strength of density-dependence. Surprisingly,
however, we found no relationship between 3 and the
degree of eutrophication expressed as either chlorophyll or
phosphorus concentrations,

Discussion

Our analysis of phytoplankton dynamics indicates that
most phytoplankton time-series can be reasonably well
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described by a single density-dependent model incorporating
daily stochastic perturbations. Given that, without the random
perturbation tcrm, the model predicts a stable and constant
abundance value, the fluctuations observed in phytoplankton
series are, therefore, ultimately driven by these small but
important daily stochastic fluctuations. Thus, unless the
time-course of the fluctuations can themselves be forecasted,
it 13 clear that the exact trajectory of phytoplankton abundance
cannot possibly be predicled with accuracy. Nevertheless,
because the characteristic signature of the temporal series is
well-described by a unique, underlying density-dependent
process. key features of the dynamies (such as the shape and
extent of the temporal semi-variogram) can be predicted
with reasonable accuracy and precision,

The remarkably consisient but weak nature of the density-
dependence (0.92 < < 0.99) is ecologically highly signifi-
cant given that these systems harbor very different algal
communities in environments as diverse as oligotrophic
marine habitats and eutrophic freshwaters. Our analysis
therefore suggests that, in spite of the manifest complexity
of pelagic food webs, the temporal dynarmics of at least one
of its major components (phytoplankton) can be greatly
simplified without an undue loss in empirical reality. It also
indicates that the net balance of ecological interactions
presumably underlying the density-dependent process (i.e..
the balance between top-down, bottom-up and physical
controls) is fairly stable in aquatic ecosystems, despile clear
differences in the actual communities living in the systems.
For example, the algal community of the Bay of Blanes is
tightly controlled by grazers (Mura ¢f af., 1996) whilc the
dominantly blue-green algal community of Lake Brome is
mainly controlled by nutrients (Prairie, unpubl. data). Each
individual inleraction may be strong when studied separate-
ly (i.e., in controlled experiments) bul collectively, the net
control exerted by these multiple interactions appears rather
weak. This feature is not readily compatible with the current
view of strong cascading interactions in aquatic systems
(Carpenter, 1988; McQucen, Post & Mills, 1986), but is
similar to the case made by Strong (1984) regarding insect
populations.

The narrow range in the strength of density dependence
(0.92 <« §<0.99) also has implications for the characteristic
time scales of variability in phyloplankton biomass. Since
the 8 parameter is mathematically related to the semi-vari-
ogram range (i.e., the time necessary to reach the sill of the
semi-variogram), the narrow band of S coefficients we
observed implies that full extent of the dynamical behavior
of phytoplankton will typically occur within time scales of
30-50 days (Table IT). These findings highlight the impor-
tance of both scasonal and subseasonal processes in
controlling algal dynamics (Prairie & Marshall, 1995) and
have considerable conscquences for the design of phyto-
plankton sampling programmes, which should focus on
thesc time scales,

The Gompertz equation (equation 1) used here is only
one of many theoretical models displaying density-dependent
control (Nisbet & Gumey, 1962 for a compilation) and it
may be argued that a similar fit could have been obtained
with several different models. On the contrary, our analysis
suggests that the Gompertz model is unique in that other
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models would typically impose a much stronger density-
dependence upon the dynamics. Given our results, this is
not an adequate representation of the underlying process for
phytoplankton. For example, the strength of density-depen-
dence of the popular logistic model (in discrete lime) relative
to the 3 parameter of the Gompertz model used here can be
estimated as

i
dt'rz(P ) d[ln(F;)+r{l—Eﬂ TR [12]
K

11 _ _
din{P) ~ din(P) =

where r is the intrinsic rate of growth (d-!) and X the carrying
capacily. When P, hovers around the carrying capacity K,
the strength of the density-dependence reduces to |-r which
for phytoplankton would be in the neighborhood of -0.5 to -1
{since r = 1.5-2.0, Reynolds ef al., 1975); these values are
very far from unity (no density-dependence) and from our
empirically estimated values of 0.92-0.99, Furthermore, the
theoretical semi-variogram for the logistic model would
reach its sill (> 95%) much too quickly (at lag & = 2-3 days)
than is clearly the case for algal populations (Figure 5). Our
results suggest that modelling phytoplankton dynamics
using the logistic equation is likely a poor choice.

We found that nutrient levels were better correlated to
the var(u) parameter than the average algal biomass,
Because the parameter var(u) drives a large portion of the
dynamics, our analysis indicates that, in addition to setting
the average algal standing stock (particularly in lakes)
(Dillon & Rigler, 1974; Smith, 1982), nutrient levels may
play an important role in determining the extent to which
daily population growth rate can vary and, consequently,
the particular type of dynamical pattern the algal population
will exhibit. This agrees well with the suggestion that even
the small daily fluctuations in phosphorus concentration
have demonstrable consequences on the temporal dynamics
of phytoplankton (Prairie & Marshall, 1995). Further
research should be conducted to test whether attributes of
other pelagic components, such as the zooplanktonic
community, can also help predict our model parameters
var{i) and f.

FURTHER PREDICTIONS FROM THE MODEL

Given the adequate performance of the simple density-
dependent model in describing key features of the dynamics,
we feel justified in extracting further predictions from it.
For example, the work of Ives (1995) suggests that ecosystem
resilience in stochastic systems can be defined as the ratio
of the variance in population density to the variance in
growth rate. The smaller the ratio, the greater the resilience
of the system to environmental perturbation, This ratio can
be easily computed for our model as

el
e[' =) =[P

Resilience==————=— [13]
var{u)

clearly indicating that eutrophic systems are much less
resilient than oligotrophic ones. It is interesting to note thal



within our data set, the 3 marine sites had the highest calcu-
lated resilience.

A second prediction can also be derived from the
model. Equations 8 and 10 allow the prediction of both the
mean and the temporal variance of the arithmetic chloro-
phyll values. Mean-variance (log-log) relationships are
important for the design of efficient sampling programmes
and have been developced for several lake variables
(Knowlton, Hover & Jones, 1984; Marshall, Morin & Peters,
1988; France & Peters, 1992} including chlorophyll concen-
trations, Combining equations 8 and 10 yields a theoretical
mean-variance relationship of the form

var(u] il

var(P) = et =51 |P [14]

Substituting in this equation the median values for var(u)
and f derived from our analysis (0.03 and 0.94, respectively,
see Table II), we obtain

var(P)=0,29P" [15]

almost identical to the empirical equation of Marshall,
Morin & Peters; (1988) of var(P) = 0.295P21, Given that
var(u) is predictable from nutrient concentrations but not
mean chlorophyll concentrations (Figure 6a), equation 14
further suggests that the temporal variance in chlorophyll
may be cven better forecasted from the average nutrient
concenlration rather than from mean chlorophyll levels.
This prediction remains to be empirically confirmed.

In summary, the 12 temporal series describing phyto-
plankton dynamics in very diverse systems examined in this
study shared important similarities, that were derivable
from a simple stochastic Gompertz model. The strength of
density-dependence was very weak in all systems, leading
to characteristic time-scales of phytoplankton dynamics of
about 40-50 days, and suggesling that the net effect of mul-
tiple interactions between pelagic components results in a
loose control of phytoplankton abundance. Although several
properties of phytoplankton dynamics predicted from the
model have been confirmed independently, others await
empirical testing. We suggest that further research should
focus on testing whether a similar model can also adequately
describe the lemporal dynamics of other biological components
and how it may relate to the primary producers.
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